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Abstract

We describe the physical-optics modelling of a millimetre-wave imaging system intended to enable automated detection of threats
hidden under clothes. This paper outlines the theoretical basis of the formation of millimetre-wave images and provides the model of
the simulated imaging system. Results of simulated images are presented and the validation with real ones is carried out. Finally, we
present a brief study of the potential materials to be classified in this system.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

A recent increase in interest in millimetre-wave imaging
has emerged from a requirement to protect public environ-
ments, such as airports, train stations and other public
buildings. Of particular interest is the possibility of using
a millimetre-wave imaging sensor for the automatic detec-
tion of suspect objects, such as weapons and explosives,
hidden under clothes. The appearance of millimetre-wave
images is very different from both conventional visible-light
imagery and from closely related infrared imagery. This
arises from the unusual physical regime where the wave-
length of radiation is relatively long so that polarisation,
angle-of-incidence effects, optical constants of scene com-
ponents and partial coherence of the illumination impact
significantly on the appearance of the scene. We describe
here a modelling technique based on physical optics princi-
ples that enables the quantitative simulation of millimetre-
wave imagery recorded using a new type of real-time per-
sonnel scanner.

We have three motivations for producing these synthetic
images. Firstly, they provide a route to obtaining large
numbers of video sequences for the training of detection,
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recognition and identification algorithms that would be
otherwise expensive and problematic to record using real
equipment. Second, synthesising images ensures that the
imaging conditions are controlled and that the ground-
truth is available (as the scene and its correspondence with
the image is known). Lastly, image simulation enables pre-
investigations on the influence of different physical para-
meters of the sensor, therefore enabling the exploration
of both the phenomenology of the image formation and
possible changes in the sensor set up.

Although there are many scene simulation tools avail-
able for visible light imaging and some for thermal imaging,
these do not implement the physical regime of light interac-
tion pertinent to millimetre-wave imaging. Surfaces are gen-
erally considered to be scattering (since the wavelength is
short) and where specular reflections are implemented,
these do incorporate the Fresnel coefficients for polarised
light. Similarly both reflection and emission from specular
surfaces at arbitrary angles is not incorporated. The issue
of specularity is particularly important since the wavelength
of millimetre-waves is long in comparison to surface irregu-
larities of typical scene components in a personnel scanner
so that all interactions are predominantly specular and
polarisation sensitive. Similarly millimetre-wave imagers
generally employ polarised illumination and detection.
Although the spatial coherence of the source is reduced
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B. Grafulla-González et al. / Pattern Recognition Letters 27 (2006) 1852–1862 1853
by the illumination system, the remaining degree of coher-
ence is sufficient to introduce significant speckle; this is also
not incorporated into conventional simulation tools.

The simulation tool described here incorporates all of
the above effects to yield a quantitative radiometric calcu-
lation of fluxes at each detector pixel. A wide literature
exists on the radiometric analysis of the millimetre-wave
image formation. Some useful references about this subject
are Grafulla-González et al. (2005), Sinclair et al. (2000,
2001), Yujiri et al. (2003), Wilson et al. (1986), Haworth
et al. (2004) and Anderton et al. (2001). To the best of
our knowledge, very little work has been reported on the
simulation of millimetre-wave images for personnel scan-
ners, although some of the above issues were addressed
by Salmon (2004a,b) and Salmon et al. (2002).

Consequently, the main contributions of our work lie in
two different aspects. The first one is the description of a
full model of millimetre-wave image formation, including
the residual coherent illumination and the speckle noise
in the synthetic images. In addition we describe a compar-
ison between real and synthetic images, validating therefore
our model.

To implement the simulator we adopted a hybrid solu-
tion, combining commercial optical ray-tracing software
Zemax to trace rays within the scene and Matlab to imple-
ment physical optics aspects of the image formation using
the ray data provided by Zemax. This solution enables
the definition of the geometry of the scene as well as the
implementation of the Fresnel coefficients for specular
reflections from the physical parameters of the materials.
Full non-sequential ray tracing and multiple reflections
are implemented. Its novelty lies in the fact that it models
the physical processes at millimetre-wavelength, whilst
allowing full definition of the scene, the materials and the
illumination. To some degree, this is a pragmatic solution:
the use of ray tracing partially neglects diffraction effects
and this will introduce some inaccuracies. A rigorous
implementation employing rigorous electromagnetic theory
may yield greater accuracy, but the computation power
required for a scene of such complexity would be exces-
sive.

This paper is divided into three parts. The description of
the full model of millimetre-wave image formation is pre-
sented in Section 2, where the radiometric analysis and
the noise modelling is explained. In Section 3, the simula-
tion of these images is described. We will explain how it
has been carried out as well as the basis for the material
discrimination. Finally, in Section 4 we will present the val-
idation of the synthetic images using the Kolmogorov–
Smirnov test and the results obtained with the simulator.

2. Formation of millimetre-wave images

Two dominant phenomena in the formation of millime-
tre-wave images are (1) the combination of emitted and
reflected radiation from scene components (radiometry
analysis) and (2) the modification of the ideal image of
the scene by the instrumental response; this includes the
imager impulse response and noise artifacts.

2.1. Radiometry analysis

For the modelling conducted here, the radiation fre-
quency is f = 35 GHz or equivalently k � 9 mm in wave-
length. This frequency is a compromise between the
competing influences of higher frequency for improved res-
olution and lower frequency for reduced cost. The focal
length of the imager is 0.8 m resulting in a diffraction-
limited spot-size at the object of �2 cm. We consider only
short-range indoor scene (the influence of the atmosphere
is neglected) with mostly incoherent illumination (Coward
and Appleby, 2003). It is important to note that the illumi-
nation source has some residual spatial and temporal
coherence and this is evident as low-level speckle noise is
present in the images.

The temperature of the objects in the scene is above abso-
lute zero and so scene components radiate power with an
efficiency determined by the emissivity �. Since the surfaces
of the body and threats are flat on the scale of the wave-
length, the reflections are considered specular (Sinclair
et al., 2000). This implies that scattering effects are small
and propagation of light within the scene will satisfy to ray
optics approximations. This approximation will break down
to some extent for smaller scale structures, such as fingers,
facial features, etc. The intensity of millimetre-wave radia-
tion at each pixel is determined by contributions from both
self-emission by scene components and reflections from illu-
mination sources both within and external to the scene. Illu-
mination of the scene is by ambient, background black body
radiation with a temperature in the region of 290 K and by
extended and diffuse active sources with elevated equivalent
temperatures of, typically, 800 K. The reflectivity, R, the
emissivity, �, and the transmissivity t for optically thick
components are related by Salmon et al. (2002):

Rþ �þ t ¼ 1 ð1Þ

These three coefficients depend on the physical characteris-
tics of the materials and other geometrical aspects of the
scene defined via the dielectric constant e, the permeability
l, the angle of incidence hi, the angle formed between the
electric field and the plane of incidence a, and the polarisa-
tion p. Note that any of these coefficients can be expressed
as a sum of the projections of the coefficient in orthogonal
and parallel polarisation planes; the power reflectivity is
then given by Born and Wolf (1987):

Rðe; l; h; aÞ ¼ Rpðe; l; hÞ cos2 aþ Rsðe; l; hÞ sin2 a ð2Þ

where the subscripts p and s denote p- and s-polarisation.
Similar equations can be obtained for transmissivity and
emissivity:

tðe; l; h; aÞ ¼ tpðe; l; hÞ cos2 aþ tsðe; l; hÞ sin2 a ð3Þ
�ðe; l; h; aÞ ¼ �pðe; l; hÞ cos2 aþ �sðe; l; hÞ sin2 a ð4Þ



Fig. 1. One of the different phenomena influencing the formation of
millimetre-wave images: the combination of power from various compo-
nents present in the scene.
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Since the active source is mostly incoherent, the three
different intensity coefficients in Eq. (1) are summed
(Fig. 1), yielding

T recðe; l; h; aÞ ¼ RT ill þ �T obj þ tT back ð5Þ
which describes the received temperature at the input of
the sensor (Sinclair et al., 2001): where Trec(e,l,h,a) is
the received temperature, Till the temperature of the illumi-
nation, Tobj the temperature of the object and Tback the
temperature of the background. Till, Tobj and Tback are
constant values.

2.2. Sensor effects

Sensor effects are modelled according to the schematic
shown in Fig. 2. This describes the weighting given to the
scene thermal emission (which is spatially incoherent and
hence is modified by the imager PSF) and two reflected
components due to partially coherent illumination by an
Fig. 2. The sensor effects are modelled by the effects of the imager and the c
variations in the received signal. The result of the system yields the synthetic
extended source. This partial coherence is considered as a
weighted sum of an incoherent component (modified by
the imager PSF) and a coherent component (modified by
the imager impulse response). It is this latter component
that gives rise to multiplicative speckle in the image.

Incoherent scene components are transformed by the
convolution with the point spread point function (PSF)
of the imager. As the aperture is circular, the PSF is mod-
elled as an Airy disk (Goodman, 1996):

PSF ¼ jhðqÞj2 ¼ I0

2J 1
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R
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kaq
R
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ð6Þ

where h(q) is the impulse response of the system, J1(Æ) is the
Bessel function of first kind, k ¼ x

ffiffiffiffiffi
l�
p

the wave number, a

the radius of the aperture, q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
the coordinates of

the point in the image plane, R the range between the aper-
ture and the object, and I0 the irradiance at the center of
the pattern. Out-of-focus components are convolved with
an approximation to an out-of-focus PSF and so appear
blurred in the simulated images. The resulting image Ipsf emi

is presented in Fig. 3(a).
The component due to reflection of the source is due to

the weighted sum of an incoherent component, that is con-
volved with the imager PSF and a coherent part that is con-
volved with the imager impulse response. The w1 and w2 in
the weighted sum are related as

w1 þ w2 ¼ 1 ð7Þ
The resulting image Ipsf ref is presented in Fig. 3(b).

For the coherent component of the illumination, the
amplitude and phase image resulting from the radiometry
analysis, Iamp, is convolved with the impulse response of
the system. This amplitude image is generated using:

Iamp ¼
ffiffiffiffiffiffi
I int

p
ejw ð8Þ
ombined effects of noise generated by the electronic devices and random
millimetre-wave image.



Table 1
Dimensions of the scene

Description Length (m)

Range object—closest part of the imager 1.6
Range object—aperture 2.9
Focal length 0.8
Lens diameter 1.6
Height of the body 1.8
Dimensions of the threat 0.075 · 0.075

Fig. 3. Intermediate images of the noise model: (a) convolved background Ipsf emi, (b) incoherent image Ipsf ref, (c) coherent image Iamph and (d) weighted
sum Isum ref.

B. Grafulla-González et al. / Pattern Recognition Letters 27 (2006) 1852–1862 1855
where w is the phase of the radiation at the detector re-
ceived from the image including the phase of the illuminat-
ing signal. The method described here involves the
calculations of all path lengths and so, provided the phase
characteristics of the source can be calculated, the phase
can be incorporated. In practice, it is very difficult to obtain
reliable information on the illumination phase and so as a
practical solution, we have assumed the combination of
illumination phase and geometrical propagation distances
to result in a random variable phase with a Gaussian distri-
bution. The standard deviation of this distribution should
be greater than about 2. The impulse response is given by
the Airy distribution (Goodman, 1996):

hðqÞ ¼
ffiffiffiffi
I0

p

j

2J 1

kaq
R

� �
kaq
R

2
664

3
775 ð9Þ

The resulting amplitude image Iamph and the weighted sum
image Isum psf are presented in Fig. 3(c) and (d), respectively.

Finally, the internal noise contributed by the receiver
electronics and the imager itself is added (Fig. 2). These
noises are modelled as a gaussian distribution whose mean
and standard deviation are estimated from a set of real
Fig. 4. The scene is composed of a body, a lens and an image plane. (a) represen
the various objects in the scene. Note that the rays are defined to pass throug
data (see Section 4). The resulting image yields the syn-
thetic millimetre-wave image.

3. Simulation of millimetre-wave images

In the synthetic images, the scene is generally composed
of a body and one or several threats (weapons, knives,
explosives, etc.). The body is incorporated as a triangle
faceted CAD model (Fig. 4(a)) and threats as metallic or
dielectric patches over the body. The typical scene is
described in Fig. 4(b) and the dimension used shown in
Table 1.

Each object is modelled according to its physical charac-
teristics: the dielectric constant eobj, the permeability lobj
ts the CAD model (stl file) used to model the body, and (b) the position of
h the centre of the lens.



Table 2
Physical object characteristics

Body ebody � 28 � i34 Tbody � 310
Metal emetal � 1 � i5106 Tmetal � 308
Plastic eplastic � 2.2 Tplastic � 308
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(which is unity for non-magnetic materials considered here)
and the physical temperature Tobj. The value of the dielectric
constant depends on the type of material. Therefore, the
image grey level actually reflects an intrinsic property of
the materials. This means that millimetre-wave images can
be used for material classification. In the simulator, flesh,
one of the most relevant materials, is modelled as salty water
(Ulaby et al., 1986) and therefore its dielectric constant will
be ebody � 28 � i34. Examples of the physical characteristics
of other pertinent materials are presented in Table 2.

Fig. 5 shows the reflectivity as well as the received tem-
perature for each material. As can be observed, metal is
completely reflective and therefore the received tempera-
ture is equal to the illumination temperature irrespective
of angle of incidence. For flesh, the reflectivity for angles
of incidence less than about 60� is about 0.6. Furthermore,
the transmissivity of flesh and can be neglected in imple-
menting Eq. (1). This material, even if it is darker than
the metal, is still detectable in a future classification.
Finally, plastic has a very small reflectivity and emissivity.
Consequently the transmissivity is high and the received
temperature is almost equal to the received temperature
of the material imaged through it. This property makes
the plastic a very difficult material to classify.

Two software tools have been used to carry out the
simulation of millimetre-wave images. A ray-tracing pro-
gramme, Zemax, is used to propagate rays back from each
detector pixel via reflections from scene components to the
source: either the illumination source or the background.
All reflected and multiply reflected rays within the scene
are characterised using the non-sequential ray-tracing
mode of Zemax and the information about every ray his-
tory is stored as a text file. By repeated application of
Eq. (5) at each intercept of a ray with a scene component
it is possible to calculate the intensity of millimetre-wave
radiation incident occurring at each detector scene pixel.
Fig. 5. Reflectivity (a) and received tem
This component of the simulation is executed by reading
the Zemax output text file with Matlab which is used to cal-
culate the equivalent temperatures at each pixel. Convolu-
tion of these images with the imager point spread function
and the addition of stochastic low level speckle noise to
images yields the simulated millimetre-wave image.

The ray-optics model used here is strictly valid only
when the scene dimensions are large compared to a wave-
length, that is, larger than a few centimetres. If this condi-
tion is not satisfied then accurate modelling requires the
rigorous electromagnetic methods that are appropriate
for unbounded problems, such as the boundary element
method. In the imaging of a person with millimetre-waves
the ray-optics method will provide accurate results for the
larger body parts with large radii of curvature, but some
inaccuracies might be expected for smaller features such as
the fingers and details of the face. These inaccuracies may
become noticeable with future improvements in detector
technology, but currently noise levels and departures
between the parameters of the modelled system and the
actual system are too large for them to be observed. The sali-
ent advantage of employing a ray optics model is in the
speed of computation and implementation and this is vital
for the simulation of large numbers of video sequences that
are required for training automated detection algorithms.

4. Results of millimetre-wave images

Fig. 6 presents simulated millimetre-wave images for dif-
ferent values of the weight w1 of the coherent proportion of
the illumination and the standard deviation r of the internal
noise. The observed ‘‘similarity’’ between the real and syn-
thetic images is very subjective, and therefore a quantitative
validation is required to compare real and synthetic images.

There are two different aspects to be validated in the sim-
ulator: (1) the noises (i.e., the sensor effects) and (2) the phys-
ical model (i.e., the radiometric analysis). In order to carry
out quantitative validations, the following steps are done.

• Normalisation of the real and synthetic data in order to
match both the mean of the background and the mean
of the object.
perature (b) for different materials.



Fig. 6. Some examples of millimetre-wave images.
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• Estimation of the values of r and w1 that minimize the
D-statistic, i.e., the value Dm,n (Appendix A), for both
the object and background distributions.

• Use of the Kolmogorov–Smirnov test (Appendix A) to
evaluate the validity of the noise models in both the
background and object areas.

• Comparison of the cross-sections, on similar scenes, of
both the real and synthetic images to validate the phys-
ical model.

For the noise validation, we have carried out a non-
parametric comparison between two data sets whose
underlying cumulative distribution is unknown. The
Kolmogorov–Smirnov test (Feller, 1948; Massey, 1950,
1951; Powers and Pao, 2005) establishes if these two data
sets share the same distribution within some confidence
intervals.
4.1. Parameter estimation

There are two parameters to estimate in our noise
model: (1) the magnitude of the coherent component of
the illumination, represented by the parameter w1 and (2)
Fig. 7. Histograms for both th
the magnitude of noise that the imager introduces to the
final image, represented by the standard deviation r of
the internal noise. These two parameters are estimated by
comparing the real and synthetic data. However, a required
preliminary step consists in first jointly normalizing both
data sets to the same range of values (Fig. 7).

To carry out the normalisation, we have established that
the relationship between real and synthetic data is a linear
relation, described mathematically as follows:

T ¼ aN þ b ð10Þ
where T is the value of the synthetic data, N the value of
the real data and (a,b) the gain and offset, respectively,
of the normalisation process.

To calculate the values (a,b), we have considered the
mean values of both the background and the object
(Fig. 8), such that:

T back ¼ aNback þ b

T object ¼ aNobject þ b

(
ð11Þ

where T back and N back are the mean values of the back-
ground area for simulated and real data respectively, and
T object and N object the mean values of the object area for
e real and synthetic data.



Fig. 8. Normalisation areas: background in brighter area and object
delimited in black.
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simulated and real data, respectively. The result of the nor-
malisation process is then presented in Fig. 9.

We next estimate the noise parameters that yield a best
fit between the real and simulated images. Using these
Fig. 9. Real and synthetic histograms after normalisation process.

Fig. 10. Parameter estimation: (
parameters, we will then validate the noise models using
the Kolmogorov–Smirnov test to compare the respective
distributions of the real and the synthetic noise.

The background is not affected by coherent light effects,
only the internal noise effects will be present. The parame-
ter r is therefore estimated from the background. For val-
ues of w1 spanning the typical values between 0 and 0.08,
we calculate the value of Dm,n between the real and syn-
thetic data of the background, for r varying between 10
and 55. Fig. 10(a) shows the resulting curves, from where
the value of r is estimated: r � 40.

Once the value of r is set, the value of w1 is estimated
similarly. In this case, the value of Dm,n is calculated for
the object area. Fig. 10(b) shows the resulting curve, where
the minimum Dm,n is at w1 = 0.04.

Finally, as the values of r and w1 are estimated, we can
generate the simulated image, presented in Fig. 11. Note
that elliptical artifacts due to the scanning process (Coward
et al., 2004) are present in both real and synthetic images.
a) r = 40 and (b) w1 = 0.04.

Fig. 11. Real image and synthetic image generated with the estimated
parameters.



Table 3
Results of the Kolmogorov–Smirnov test

m n N Threshold Dm,n H0

Background 4857 8042 30281 0.0247 0.0121 Verified
Object 169 240 99 0.1364 0.1099 Verified
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4.2. Noise validation

To validate the noise levels in both the background and
the object area, the non-parametric Kolmogorov–Smirnov
test is used. The procedure of this test is as follows:

• Calculation of the value of Dm,n for the two data sets to
be compared.

• Comparison of this value to a threshold da(N), which
only depends on the number of samples of the two data
sets.

• If Dm,n 6 da(N), then the hypothesis H0 :Sn(x) = Tm(y) is
verified, and therefore the two data sets can be consid-
ered to have the same distribution within the confidence
interval.

• On the opposite, if Dm,n P da(N), then the hypothesis
H1 :Sn(x) 5 Tm(y) is verified, and therefore the distribu-
tions of the two data sets are different.

In our case, the values of this test are presented in Table
3. In both the background and the body areas, the Kol-
mogorov–Smirnov test is positive, and hence the distribu-
tions of the real and synthetic data are considered to be
the same. Consequently, the noise model for both areas is
Fig. 12. Comparison of the empirical cumulative distribution function and h
validated. Finally, Fig. 12 shows the comparison between
cumulative distribution functions and histograms of the
real and synthetic data. It can be noticed that effectively
real and synthetic data have very similar distributions.

4.3. Physical model validation

To validate of the physical model, we compare different
cross-sections in the real and simulated image, and estimate
the root mean square error (RMSE) between them:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M

XM

i¼1

½I realðiÞ � I simðiÞ�2
vuut ð12Þ

where Ireal(i) is the ith sample of the cross-section of the
real image, Isim(i) the ith sample of the cross-section of
the simulated image and M the total number of points in
the cross-section.
istograms between real and synthetic data for the background and body.



Fig. 13. Comparison between the real and simulated cross-sections of the body.

Table 4
Results of the RMSE

Top line Middle line Bottom line

Absolute RMSE 10.0110 12.4212 11.3845
Relative RMSE 3.91% 4.85% 4.45%
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Fig. 13 shows the comparison for different cross-sec-
tions, and Table 4 presents the values of the absolute and
relative RMSE for each cross-section.

Current plots show that the dynamic of the simulated
cross-sections are very similar to the real ones, reinforced
by the fact that the values of the RMSE for all the cases
are small compared to the typical values of the images:
around 4% of error. The strongest discrepancies, to the
right of the middle and bottom lines, are due to respectively
a difference in the position of the arm of the CAD model
and the real person, and low frequency spacial artefacts
in the background (the lower left part of the background
is brighter), which the simulator does not model.

5. Conclusion and future work

In this paper, we have described the physics underpin-
ning millimetre-wave scene simulation and presented a
physical optics simulation of millimetre-wave images using
commercial optical ray-tracing software and Matlab. Our
initial results show that it is possible to recreate real scenar-
ios by means of their physical and geometrical characteris-
tics. Synthetic images are obtained with reliable quality
compared to real images according to the validation car-
ried out.

Future work aims at three different aspects. Further
physical model validation is needed, especially regarding
new materials and fully controlled scenes. In this way,
shapes easily modelled should be used (as for example,
panels or cylinders). As outlined, the millimetre-wave
images reflect the physical properties of material and
therefore potentially enable material classification. The
simulator will enable the exploration of modifications of
the sensor so as to enhance its material discrimination
capability. One possibility is to fuse image information
from different sensor configurations (lighting, polarisation,
frequency).
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Appendix A. The Kolmogorov–Smirnov test

Let (x1,x2, . . . ,xn) and (y1,y2, . . . ,ym) be two data sets of
size n and m, respectively, n and m not necessarily equal,
of mutually independent random variables having a
common continuous cumulative distribution F(x), and
ðx�1; x�2; . . . ; x�nÞ and ðy�1; y�2; . . . ; y�mÞ the rearranged data sets
in increasing order of magnitude. Let Sn(x) and Tm(y) be
the corresponding empirical cumulative distribution func-
tions defined by

SnðxÞ ¼

0 for x < x�1
k
n

for x�k 6 x < x�kþ1

1 for x P x�n

8>><
>>:

T mðyÞ ¼

0 for y < y�1
k
m

for y�k 6 y < y�kþ1

1 for y P y�m

8>><
>>:

ðA:1Þ

The hypothesis we would like to verify within given confi-
dence intervals da(N) (i.e., the null hypothesis) is defined
such that:

H 0 : SnðxÞ ¼ T mðyÞ ðA:2Þ
We define a new random variable Dm,n, which only depends
on the number of samples in each data set:

Dm;n ¼ sup jSnðxÞ � T mðyÞj ðA:3Þ
The distribution of Dm,n is not known, however (Feller,
1948) it can be demonstrated that the random variable
N

1
2Dm;n (where N ¼ mn

mþn) tends towards a limiting cumula-
tive distribution, L(z), as m!1, n!1, and m

n ! a,
where a is a constant. The limiting cumulative distribution
L(z) is expressed as

LðzÞ ¼ 1� 2
X1
j¼1

ð�1Þj�1e�j2z2 ðA:4Þ

Summarising:

lim
m;n!1

Pr N
1
2Dm;n 6 z

n o
¼ LðzÞ ðA:5Þ

and rearranging terms we obtain:

lim
m;n!1

Pr Dm;n 6 N�
1
2z

n o
¼ LðzÞ ðA:6Þ

The null hypothesis is verified if the values are under a cer-
tain threshold daðNÞ ¼ N�

1
2z (which is equivalent to write

that both cumulative distribution functions are within the
same confidence interval da(N)). On the other hand, the
probability of rejection can be written as

lim
m;n!1

PrfDm;n P daðNÞg ¼ 1� Pr Dm;n 6 N�
1
2z

n o
¼ a

ðA:7Þ

and verifies the so-called alternative hypothesis, that is:

H 1 : SnðxÞ 6¼ T mðyÞ ðA:8Þ
We set arbitrarily that the probability of acceptance of the
null hypothesis is 0.95 (or probability of rejection = 0.05),
i.e., L(z) = 0.95, which gives a value of z of 1.3581 (Smir-
nov, 1948). And finally, the threshold for the null hypo-
thesis is calculated as

daðNÞ ¼
1:3581ffiffiffiffi

N
p ðA:9Þ
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