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An Automatic Approach to the Detection and
Extraction of Mine Features in Sidescan Sonar

Scott Reed, Yvan Petillot, and Judith Bell

Abstract—Mine detection and classification using high-reso- cation process then uses up to 45 features for every possible
lution sidescan sonar is a critical technology for mine counter MLO to determine which are real MLOs and which are false
measures (MCM). As opposed to the majority of techniques which alarms. The system in [2] utilizes an adaptive thresholding

require large training data sets, this paper presents unsupervised ) - . .
models for both the detection and the shadow extraction phases of technique for the detection after which geometric features

an automated classification system. The detection phase is carried @re extracted, allowing each MLO to be classified as mine or
out using an unsupervised Markov random field (MRF) model not-mine. Adaptive Clutter Filter technology is used in [4] to

where the required model parameters are estimated from the suppress the background clutter after which classification is

original image. Usinga priori spatial information on the physical ~ caprjeq out on an optimum set of features. These systems are
size and geometric signature of mines in sidescan sonar, a detec-_. ilar in that the detected MLO is classified simpl .
tion-orientated MRF model is developed which directly segments Similar in that the detecte IS classilied simply as mine

the image into regions of shadow, seabottom-reverberation, and OF Not-mine by considering a set of features and that all three
object-highlight. After detection, features are extracted so that require training using a large amount of ground truth data.

the object can be classified. A novel co-operating statistical snake The success of these models is thereafter dependent on the
(CSS) model is presented which extracts the highlight and shadow gjjjarity between the training data and the test data with poor
of the object. The CSS model again utilizes available priori - . .
information on the spatial relationship between the highlight and rgsults being observed when thg difference between the tV_VO IS
shadow, allowing accurate segmentation of the object’s shadow high [2]. It has also been shown in [5] that the success of trained
to be achieved on a wide range of seabed types. Results are givenmodels can be dependent on the choice of data used to train
for both models on real and synthetic images and are shown to the system. The reported successes of these models have been
compare favorably with other models in this field. dramatically improved by fusing the results of the individual
Index Terms—A prioriinformation, automated mine detection, models [2], [6], [7] together. This is based on the premise that
image analysis, Markov random field (MRF) models, shadow ex- as the individual models use different mathematical functions
traction, statistical snakes. to carry out their procedures, fusing the results together will
both confirm suspected MLOs and help remove false alarms.
l. INTRODUCTION This idea has provided encouraging results and could be easily

tended to other automated MCM systems, both supervised
HE ANALYSIS of sidescan sonar images in the field o X N 4 upenvi

) ) . . nd unsupervised.
mine countermeasures (MCM) is traditionally carried out P

. . A Instead of considering the computer aided detection/classi-
by a skilled human operator. This analysis is difficult due to thﬁ%c g P

| abilityin th fthe sid : ﬁltion (CAD/CAC) problem as being completely integrated,
arge variability iInthe appearance ot the sidescan Images as Wedagrch is often carried out on a specific aspect of the problem.
as the high levels of noise usually present in the images. With

q . ¢ q i hicle (AUV) technol tIBStection of possible MLOs has been attempted using fractal-
advances in autonomous underwater vehicle ( ) techno OPsed analysis [8], spatial point processes [9], and dual hypoth-

automated techniques are now required to replace the operaigg theory [10] where an object is characterized as a disruption

to carry out this analysis on-board. in the local texture field. However, the success of these models
Complete MCM systems are usually composed of a detecti eavily dependent on large training samples and simplifying
and a class_|f|cat|on process such as the systems by Dob eling assumptions, raising questions to their widespread ap-
et al. [1], Ciany et al. [2], [3], and. Aridgideset .al' [4]. Al.l. licability. Thresholding and clustering theory has been used in
three of these systems operate using the detection/classifica Em and [12] to segment the sidescan sonar image into regions
framework although they operate using very different models; 0.+ highlight, shadow, and background after which neigh-
queck Implements a m'atched filter in [1] to d_etect rnlne_I'ksoring object-highlight and shadow regions were labeled as pos-
objects (MLOs) aiter which both & -nearest neighbor neuralsible MLOs. This idea has been developed further in [13] where

network classifier and a discriminatory filter classifier arg o Markov random field (MRF) models were used to segment
used to cllassn‘y fche obJ_ects as mine or _not—mme. T_he dgtgct% images using the priori knowledge that object-highlight
process is relatively simple and is primarily for identifyin

. . D ) .gregions generally lie close to shadow regions. While the tech-
regions which definitely do not contain MLOs. The CIaSSIfI'nique is not a detection model as such (it identifies possible ob-
ject-highlight pixels rather than regions), it does demonstrate
Manuscript received April 22, 2002; revised August 23, 2002. that MRF models can provide a suitable vehicle for modeling
The authors are with the Ocean Systems Laboratory, Department é’fpriori information. The use o& priori information is con-
Computing and Electrical Engineering, Heriot-Watt University, Riccarton,. ™ . .
Edinburgh EH14 4AS, U.K. vincingly demonstrated in [14] and [15] where an MRF tech-
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Remove the false alarm from the detection result

nigue was used to model some of the available information c ¢ 1
the sonar process. 1 1N
After an MLO has been detected, a classification procedu| Det« L.‘ Exiract Object | | Compare shadow »(PWW \

MLO Shadow to known shape 9

is required to determine whether the detected object is a fal:__owevoos) [__icss mobe) shadows i]“/‘/
alarm or not. While many systems define classification a “L' vES
simply determining whether an object is mine or not-mine
geometric analysis can be used in the classification stage to
determine the shape of the object [16]. Mines can often B&. 1. Overall proposed detection and classification system. The first two
described by simple objects such as cylinders, spheres, &R are considered in detail in this paper.
truncated cones, therefore ensuring that, if the MLO can be
classified as one of these objects, it can be identified as a m{ggted object. This paper concentrates on the first two stages of
with a high degree of confidence. A nonpositive classificatiofhe process.
as one of these objects leads to the MLO being identified asa novel, automated detection model is presented to fulfill
not-mine. Fawcett [17] has attempted this form of classificatiqRe first stage of the process in Fig. 1. This utilizes an MRF
using simple features drawn from a mugshot of the object (thisodel to carry out a detection-oriented segmentation on the raw
process assumed prior detection of the object). The technigji@escan image. While most detection models which consider
is interesting yet was tested using only synthetic data where t@ underlying label field use a two-tier process (the image is
success rate deteriorated when complex backgrounds Wh® segmented after which the detection problem is consid-
added to the object mugshots. The extracted highlight regiong¥td), this model will directly segment the image into regions
the object has also been considered in [18] and [11] for classif object-highlight, seabottom reverberation, and shadow using
cation but is usually too variable and dependent on the speciigailablea priori spatial information on the appearance of mine
sonar conditions to be used as a reliable classification featusgynatures in sidescan sonar. Results will then be presented on
A popular feature to use is the object’'s shadow region whighth real and synthetic images.
is generally more dependable and can be used to accuratelyhe detection phase identifies (areas where the model has
classify the object if it can be extracted accurately. identified a mine-like signature) which need to be extracted
Extraction of the shadow using classical edge-driven dgpm the image for further examination. A novel co-operating
formable models [19], [20] is generally not possible due teatistical snakes (CSS) model is then presented which pro-
the high levels of noise in sidescan imagery. Models havgjes an accurate and robust method for extracting both the
been developed to overcome this problem using fuzzy logigjects highlight and shadow regions. The model segments
[21], histogram thresholding [22], and statistical models [23{he object-highlight and the shadow region by considering the
Although these models offer good results on relatively flanage as being composed of three separate statistical regions.
seabeds, the presence of sand ripples often leads to inaccufifg a priori information on the relationship between the
shadow extraction [24]. Quidet al. [22] classify the object opject-highlight and the shadow, accurate segmentation can
by extracting features from the shadow and comparing thesg achieved on seabed types where other models would fail.
to a training set. Due to the nonlinear nature of the sonResults are given again on both real and synthetic images.
process (the same object at different ranges and orientationghe paper will be laid out as follows. Section Il details the
will prOduce Completely different shadow regionS), the featur%ﬁescan process and discusses \ﬂhﬂiori know|edge on ob-
first had to be range normalized. Deformable templates hg¢ts in sidescan sonar is used within this paper. Section 111 will
also been used in [25] and [26] to directly classify the objecietail the unsupervised detection model. Section IV will out-
Mignotte et al. [25] approximated the shadows produced by fne the CSS shadow extraction model and highlight the link

cylinder and a sphere as a parallelogram and spline templaiggyeen the two separate processes while Section V will con-
respectively, using affine transformations on these templatescigde the paper.

find the best fit to the shadow. While good results are observed,
these template models are disadvantaged for classification
purposes in that they usually include the assumption that the
MLO will match one of the tested templates. Also, altering the Forthe purposes of this paper, itis assumed that all objects are
shape of the shadow template directly instead of consideridigcrete and protrude above the seabed, but are still connected to
the relationship between the objects parameters (size and @fit4]. If it is assumed that the sonar sound pulse moves without
entation) and the resultant shadow region will affect the abilitgfraction, the process can be approximated by tracing rays, sim-
to determine the object’s dimensions during the classificatidiar to the ray-tracing method used for simulating optical scenes
stage. [27]. This produces the geometrical situation pictured in Fig. 2.
The solution presented here, which aims at solving the auts the object is denser or has a higher reflectivity than the back-
mated MCM problem, is a three-tier process as summarizedground, the return from the object surface (points A—B) is much
Fig. 1. The first stage detects MLOSs in the sidescan data. Havistgonger than the background. The sonar shadow (points B—C) is
identified these possible targets, the second stage extractsptwauced due to the object effectively blocking the sonar waves
shadow cast by the object to be used later in the classificatimom reaching this region of the seabed. While this model is not
stage. This classification stage will use the shadow informatigorrect in all cases (extreme range, floating objects), MCM data
to provide information on the shape and dimensions of the de-usually taken with a sonar fish at low altitude. This ensures

Mine

Il. OBJECTS INSIDESCAN SONAR
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Q. ~._SONAR FISH

two-class anisotropic MRF model in [25] to develop a detec-
C tion-orientated segmentation model. This model wsesiori

knowledge on the size and appearance of mine signatures in

sidescan sonar to directly segment the images into regions of

object-highlight, shadow and seabottom-reverberation.

B. MRF Theory
/ A general MRF model consists of two fields, the observed

imageY and the underlying “true” label field which we wish
to recover. A pixels is assigned a labet, based on two cri-
teria. The first is dependent on the labels of the neighboring
A| B C pixels and is controlled by a local Markovian probability term.
The second criteria considers the probability of labglpro-
ducing observed gray level. This requires that each possible
label field has a corresponding noise distribution from which its
observed graylevels can be drawn. Therefore, the MRF model
must first have the capacity to determine the parameters of the
Markovian probability term as well as the parameters of the
] ) o ) ) noise distributions.
thrﬁécg?c?;?é?;?no; of object in sidescan sonar images using the ray-basec\Ne consider a more c;omplex set of three randqm figlds
(X, Y, O)where we defin@ = {Y;, s € S} asthefield of ob-
servations (this is the raw sidescan image) where &adhkes

that the objects produce shadows and therefore comply with th@alue from the possible gray-level valugg- - - 255}. Label
model described in Fig. 2. field X = {X,, s € S} is the underlying label field which we

Fig. 2 illustrates the geometry for one line of a sidescagish to recover and s&, can take the valu¢e, = shadow,
image. As the fullimage is created by repeating this process {qr = scabottom-reverberation, ey = object-highlight}. O =
each pulse as the AUV moves through the water, the shadpw, s ¢ S} is defined as the object field where each
region produced by the object can only be as wide as the objectirawn from{oy = object, 01 = non-object}. This field
in the sonar image (points D-E in Fig. 2). can be determined directly by considering label fidldvhere

The object signature observed in Fig. 2 allows common chay, — oo(object) if Xy = ey(object-highlight) and O, =
acteristics to be modeled and used in both the detection and §hgnon-object) otherwise. Label Field) therefore shows the
CSS model. As MLOs are small, the highlight observed is algQustering of object pixels. Based on the observed data
small, isolated, and compact. Due to the usual MCM pl‘OCGdU{’E’S7 s € S}, the detection process can be cast as an analysis
of using a low altitude sonar fish, this small highlight will beof the conditional probability?(X, O|Y"), the probability of
accompanied by a shadow region. the “unobserved” true data given the observational data. Using
Bayes theorem, this probability can be expressed as

Px oy (z, oly) < Px(z)Pox(o|lz)Py|x(ylz). (1)

_ _ _ Py x(y|z) is the likelihood term where the data is as-

The first stage in the automated MCM process is the deteimed to be independently conditioned on labeling process
tion of possible MLOs within the raw Sidescan image. While( . |t can therefore be defined as a product of the individual
many mine detection models act directly on the noisy Sidescgitel probabilitiesPy| v (yz) = [I.cs Py. x. (ys|7.) where
image, promising results have been obtained by first trying yq,les (ys|zs) is the probability of observed gray-level,
segment the image to recover the underlying label field (in thiging drawn from the noise distribution used to represent
paper, the allowed labels are shadow, seabottom-reverberatig§el ,. Py () is the Markovian prior distribution used to
and object-highlight) [14], [24]. An MRF model provides a remodel the dependencies between pixels of the label fiéld
liable framework for obtaining this underlying field by incorpo—pO|X(0|x) is a prior probability which usea priori informa-
rating pixel dependencies into the segmentation model (i.e igh on the size and geometry of mine signatures in sidescan
pixel surrounded by shadow pixels is most likely to belong to thgynar to discourage clusterings 6f = og(object) which
shadow class itself). This ability to simply and effectively moda{ave the wrong size. Expressing the posterior distribution as
the inter-spatial dependencies between pixels has ensured f"]éton'(% oly) o« exp{-U(z, y, 0)} [31], the underlying

simple MRF models have been used for a wealth of applicebel field can be obtained by minimizing the following
tions, obtaining accurate segmentation results in the presencg®iterior energy:

strong noise [28]-[30]. However, within the context of sidescan

imagery, where there is a large variation in the appearance ang. v, o) = Z (s, ys) + Z Bat[1 = 6(s, 4]
complexity of the images, more complicated models containing s€s (s,t)

parameter estimation phases are required to ensure a confident — Z §(x5, €2). In Wx(s) — Z Xs(2s; 05). (2)
segmentation. The MRF model used in this section extends the ses ses

I1l. UNSUPERVISEDOBJECTDETECTION

A. Introduction
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for using a Rayleigh distribution for the seabottom-rever-

Vi u W
: i beration class can be seen in [32]. This argues that isotropic

| X | B seabed regions are described well by Rayleigh distributions
. while it is assumed that the luminance within shadow regions
M Bl B, B, By B is essentially due to electronic noise and so is described by a

Gaussian distribution.

Fig. 3. Second-order neighborhood system with associated cliques and theiAS mine-like objects are knowapriori to be small and clus-
labeling notations. tered [10], the estimation of these parameters without consid-
eration to the third clasX; = es(object-highlight) was ex-
pected to yield accurate results. Determining estimate3 to
1 and ©, was done using the Iterative Conditional Estimation
| (ICE) model described in detail in [31], and [33] and summa-

rized here. The ICE technique first requires initial estimét
Obtain inital ‘,bjeclhigh“gmmisepmﬂ and@LO] to the parameter®, and©,. The iterative technique

Determine shadow and seabottom parameters |

Determine Markov clique Parameters

then define®* ™ andof ™ to be the conditional expecta-

tions of parameter estimatogs, andéy, respectively, at itera-
REPEAT tion k£ + 1 dependent on the dalad = y and the current param-
CONVERGENCE  eter fits@&k] and@Lk]. Appealing to the law of large numbers,

these terms are related by

'

One pass of the detection—orientated segmentation

Re—calculate the shadow potential fields and clustering fields

Re—calculate object-highlight noise parameters
[

i . 174 A
Post—segmentation Processing G[z'k—‘rl] = ﬁ I:e-r (x(l)) + e + 61' (w<n)):| (3)

DETECTION RESULT 1

O =~ [0, (z), 9) + -+ 0y (20 ¥) | (@

Fig. 4. Overview of the detection model. [k+1] [k+1]
Both ©; and Oy can therefore be calculated by

drawingz;y, i = 1---n realizations from the posterior distri-
. . ution Py |y, o (z|y, ©[¥1) wheren, the number of realizations,
— 10 Py, x, (4s|2) Is the energy term relevant to the Ilkellhoocf)s set to 1. The Gibbs Sampler was used to generate samples

function Py x(y|z). The second term describes the depen- . . )
dency of labek:, on the label values of the neighboring piXeIErom this posterior distribution which was represented by a

of s where a second-order anisotropic model has been usseicri‘[.m“f.ied version of the %oster.it())rdegergy in (2). This gave the
Fig. 3 shows the four allowed cliques for this neighborhoo&’,OSterlor energy teri,, described by
thereby showing hows,; = 1, 32, B3, or 3, depending on — _
the relative position of the neighboring pixel to pixel Vet (. 9) Z Ps(s: ye) + <Szt> Puell = 8lws: a)]- (9)

The third term acts only on pixels with labet, =
ea(object-highlight). This uses an adaptation of a potential The last two terms of (2) have been neglected as these deal
term derived in [13], utilizing thea priori information that a With the X, = ea(object-highlight) class and are therefore not
mine highlight should have a shadow to the right of it (pot#sed in this parameter estimation step. For the ICE technique
configuration). The fourth term uses maeriori information to work, initial estimate®£” ande!” to the model parameters
and favors the clustering @b, = og(object) pixels only if ~are required, as is a method for determintngand®, at each
they are of the right size. This function models the belief thégration. X X
mine-like signatures are in general compact and separated. 1) Determining®, and ©,: Determining the estimator of

An overview of the entire detection-orientated segmentatidéhe Markov parameters),,, is done by considering label field
process quantified in (2) can be seen in Fig. 4. The separateand uses a least squares technique as developed bydderin
components within this process will now be considered in detadll. [34]. Defining, as the second-order neighborhood of pixel

s as shown in Fig. 3, the Markovian probability can be written

C. Estimation of the Markoviag Parameters and Noise as
Parameters

The first term on the right-hand sid@(xzs, ys) =

sES

T

For the estimation of the Markovian parameters Px.jx,, (s, ©2) oc exp{ =Y (s, 1) O } ©6)
©. = {b, P2, B, fa} and the noise parameters, th§here, using the labels in Fig. 3, we have
image is first considered to be composed of only two regions:
shadow and nonshadow. The likelihood term for the shadO\(x, n) = [I(zs, u1) + I(xs, us), I(xs, m1) + I(xs, 72),
class Py, |x, (ys|eo) is assumed to be a Gaussian with mean I(zs, w1) + I(zy, w), I(zs, v1) + I(zs, v2)]T  (7)
gray-level and variancew,, ando?,, respectively. The likeli- - o -
hood term for the seabottom-reverberation cl&ssx,_ (y.le1) wherel = 1 — ¢ and¢ is the Kronecker delta function. This
is described by a shifted Rayleigh law with minimum gray-levegirobability describes the dependency of labglon the labels
ming., and variances2 ,, thereby requiring noise parametersf the pixels in neighborhoog,. For a given neighborhoogl,,

sea’
Oy = {mgn, 03, ming., 0%, } to be estimated. Justificationthe ratio of the probabilities of pixelbeing a shadowi(; = eg)
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or a seabottom-reverberatian,(= e;) pixel can be calculated often have a higher degree of reflectivity than the seafloor, ob-

using (6) and taking the logarithm to give ject-highlight regions are generally among the brightest parts
Py.x, (e1ln) Py x, (e1, ) of the_S|descar_1 image (which are ty.plcally qgannzgd to 8 b).

In P (o) =In Px x ( ) Teaching algorithms to model the object-highlight noise distri-
X.|x,, (eo]n X, X,, (€0, N bution based on training sets would prove problematic due to

=[Y(eo, n) = T(er, M]"O..  (8) the large number of variables that dictate the appearance of the
For each possible neighborhood configuratiprthe second highlight regions. For instance, sonar images taken on the same

term in (8) can be approximated using simple histogrammiﬁgadmg but different altitudes would produce very different re-

where the number of times each configuration occurs in the Bl ts. An AU.V on a d|fferent.head|ng altogether would likely
field is counted to give produce an image unrecognizable as the same area of seabed.

Due to these complexities, it is necessary to deduce the ob-
Px, x,,(e1, n) _ #{s€ S x,=e1, vy, =0} 9) ject-highlight noise distribution on a per-image basis, using a
Px, x, (eo,n)  #{s € S:as=co, zy, =1} distribution that simply models the vagaepriori belief that

This creates an over-determined set of equations for the f3{Jf Nighlight regions are the brightest parts of the image. A nor-
unknowns which can be solved in a least-squares sense to prglized linear equation is used with the form
vidDe ?n es_timatétbﬁ for trt1_e Mtarko#iatrrl] mod(-_zl paramete@tsé.r Py |x, o, (Ys|e2, ©)
etermining the estimator of the noise parametérs _ 4 Ul — a0\ _ 14
is achieved by considering the complete datay) and is ob (monys + Cob)U (Y5 = min)U (Gmax =) - (14)
obtained using a simple maximum-likelihood method whemhereU(.) is the Heaviside functiony,,, is the gradient of the

the individual components (@y can be determined by line, c,1, is the intersect poiny,,;, andgy,.x are the minimum
1 and maximum allowed gray levels ant,, ensures the func-
msn(z, y) = N > (10) tion to be normalized within the allowed limitS)min, gmax }-
0 seSias=ep Initially we have no information on the expected range of the
. 1 . bject-highlight pixels and so th ti I =
2 _ 2 object-highlight pixels and so the conservative values.gf
,y) = s — Mep 11 :
Oan(; ) Ney, — 1 Z (ys = sn) (1) 1.0, cob = 0.0, Ao, = 3.07 X 107°, gmin = 0 are allocated.
SES:xz.=eg . . . . .
— ] Jmax 1S allocated the highest gray-level value in the image. This
Millsea (7, y) = min{y,: v, = e1} = 1 , (12) produces a normalized triangular function. Using these param-
62 (z,y) = 1 Z (ys _ H/ﬁsea) (13) e_ter estimates for Fhe opject—highlight_ regions along \_A{ith the
2Ne, s€Sim=c, final parameter estimates,, the label fieldX can be initial-

ized for all three classes. This is demonstrated in Fig. 5 where
three images containing mines are shown along with the initial
labeling for field X prior to segmentation.

As Fig. 5 shows, the accurate parameter estimatio® pf
sing the ICE technique has led to a good initialization for the
shadow and seabottom-reverberation regions. The description
of the object-highlight regions is much poorer due to the lack
of a priori information, highlighting the need for the two prior

whereN; is the number of pixels with label

2) Obtaining Initial Estimates®!” and @LO]: Once an
initial label field X [7itiell has been determined, the initial
estimates®”) and®!” can be obtained using the techniqueg
described in the previous sectioX!""**¢!] is obtained by
first splitting the image intoM nonoverlapping windows.
Each window is assigned a vectgy, where0 < i < M.
Each vector; is compo_se_:d of two components;, the mean terms in (2) to provide an accurate segmentation.
gray level, and_i, the_ minimum gray level. These vectors ar€ As the detection-orientated segmentation continues, the
then clustered into either a shadow or seabottom—reverberatb(m)rS which affect ther, = es(object-highlight) pixels (these
group using ak-means clustering algorithm [31]. From thi N y e

lusteri lorithm. th . likelihood estimat o terms are explained in the next section) will begin to
c%]s ering aigorithm, the maximum-i _e'lt_?o estimates Gomove many of the false alarms allowing the noise distribution
0" can be obtained. The label field [t can then be

N . ) ; _ X - for the object-highlight regions to be updated. This allows
initialized using simple maximum-likelihood considerationg,o ymerical values used for initialization to be updated as

[essgntially segmenting the image u_sin[%]only the first t_erm Pe segmentation proceeds.., and c,;, are updated by a
the right-hand side of (5)]. From thi&)," can be obtained | ¢55t-squares method similar to that used in the estimation of
using the least-squares method described in the Bgev'%'f where a general linear line is fitted to a histogram of the
section. Starting from initial parameterestlmaf)ig] and®:", pixels labeledY, = es(object-highlight).

the ICE model can thereafter produce more accurate eStimatesParameter%in and(]ma(x are estimated from the object-high-
light histogram while4,y,, the normalizing constant, is calcu-

D. Obtaining and Updating Initial Object-Highlight Noise lated by

Parameters
2

mob(ggnax - gglin) + Cob (gmax - gmin) '

The appearance of object-highlight regions in sidescan sonar A, = (15)
is dependent on a large variety of factors such as the mate-
rial and orientation of the object involved. It therefore cannot , o ,
be described by a well-defined noise law as with the shaddw Modeling the A Priori Information

and seabottom-reverberation regions. However, due to the facObjects in sidescan sonar leave a recognizable signature char-

that the objects protrude above the seafloor and that they haeterized by a highlight region followed by a region of shadow.
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Fig. 5. (@) Three images containing mines. (b) Initial three-class labeling offigddor to the detection-orientated segmentation where black represents shadow
regions, gray represents seabottom-reverberation regions and white represents object-highlight regions.

As discussed in Section I, the highlight regions of these ob- 3 min
jects also generally appear in small dense clusters surrounde
by regions of seabottom-reverberation or shadow. This knowt . Considered pixel o
a priori information can be modeled to increase the robustnes
of the detection algorithm.

1) The Shadow Prior Energy Ternithe term
=D ses 0(xs, €2). InWx(s) in (2) acts only upon pixels
with label z, = es(object-highlight) and discourages pixels
not in the proximity of a shadow region from being labeled
xs = eg(object-highlight) [13]. A priori information on the
geometry of the signature (all examples here are for por
configuration) allow this criteria to become more specific in
that the shadow region must lie to the right of the highlight
region. We define a shadow pixef ; situated at rowi and
column 5 of the image which generates a potential field w
¢s¢ . (r) such that min

Fig. 6. Definition of object mask used in prior. The physical size of the objects

bee (1) = 1 exp(—z) (16) being looked for is used to define the size of the inner region I.

S

o
i, 7

y Inner regionI

Outer region B

are given conservative estimates, simply ensuring that cluster-
ings of pixels which are obviously too small or large to be a mine

throughout to allow a smooth drop-off in the potential. Utilizing"® unlikely to remain labeled as object-highlight regions. Pa-
the a priori information that the shadow is always to the right2Metlmin is used to define amasK as shown in Fig. 6 where

of the highlight region in port configuration, we can express tH8€ Size of regiong and 3 will depend on the pixel resolution.
total potential field at pixeky ; as Mask M is comprised of three regions: the pixel under con-

sideratiorv,, an inner regiod with width/,,;,,, and an outer re-

o _ o (DS UG —1 17 gion B with width 31,.,;,. The object-clustering fielgs(xs, os)
x(s.0) Z ¢1~j( Wik UGG = 1) (@7) at pixel s can be determined by

wherer(r # 0) is the distance from pixel? ; ando controls
the rate of drop-off of the potential field. This is setsat= 5

seES: T .=eg
. . . . 4 1 1
whered is the distance between pixedg ; ands; ;, § is the x;(zs, 05) = N Z <6oi:00 - 5) <§Os=00 - 5)
Kronecker delta function, and(.) is the Heaviside function. I er
2) The Clustering Prior Energy TermThe final term in en- 2 1
ergy equation (2)- - . s xs(xs, 0s), considers object field " Np ;3 (5%:01 - 5) (18)

to promote situations where object-highlight regions appear in
small dense clusters. Thas priori knowledge on the size of whereN; is the number of pixels in regioh Np is the number
the objects being searched for is described by object pararoépixels in regionB, andt andv are integers used to sum over
ters©, = {lmin, lmax} Wherel,,;, andl,,., are the minimum all the pixels in regiond and B, respectively. This function is
and maximum size of objects being searched for, respectivatyaximized when regioi is composed entirely of object pixels
This assumes that the image has been geo-referenced pricartd regionB is made up of nonobject pixels, thus rewarding sce-
analysis where each pixel is therefore a measure of distamzgios where the object cluster is small and isolated. The func-
rather than time. New inertial navigational sensors (INS) sy8en encourages clustering of object-highlight pixels of the size
tems for geo-referencing can offer good estimates on both thietypical mines and is also useful in that it does not discrimi-
AUV'’s position and velocity, ensuring that the geo-referencethte between the probability of a pixel belonging to the shadow
image is amore accurate representation of the scene than thesaseabottom reverberation classaas= o1 (non-object) for
image. However, to account for possible errdgs,, andl,,.x bothz, = {eg, e1}.
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F. The Segmentation Process

Achieving the global minima of (2) is a computationally
huge task. The iterated conditional modes (ICM) technique
[28] dramatically lightens computational demands by swiftly
converging onto a local minimum. Segmentation is carried out
using a raster scan where each pixel is considered in turn. Eac  mitiat Fietld &
pixel s is assigned a labal, so as to always minimize energy
U(z, y, o) in (2). Fig. 7. Explanation of the labeling process using a mode filter to ensure that

After every sweep through the image, object fi€lds up- every pixel within each object is described by the same size dimensions.
dated from label fieldX. The shadow potential field x (s) is
recalculated for each pixeland the object-highlight noise pa-removed and replaced with = e; (seabottom-reverberation)
rameters are also recalculated. While these calculations shqpileels.
theoretically occur after every pixel label change, real-time con-
straints make this impractical and, in practice, good results are
obtained with the updates being calculated after every sweeﬂi" Resu

The detection results given in this section assume that the
objects present in the images hawe = {0.3, 1.8} where
these values are in meters. The detection model is first demon-

The detection-orientated segmentation process produséi@ted on two synthetic images generated using the sidescan
a field X which is segmented into regions of shadowgonar simulator model developed by Bell [27]. This simulator
seabottom-reverberation, and object-highlight. While the laggas used to provide fully ground truthed data where exact de-
two terms in (2) discourage regions of object-highlight whickils of the scene and objects could be controlled. The first ex-
do not conform to the known mine signature in sidescan, falagple is a simple scenario where all the objects present appear
alarms can occur. To remove these, a postsegmentation pro@&san isotropic seabed while the second example is more diffi-
is carried out. This process will first us®, = {lmin, lmax} cult due to the presence of the sand ripples. Both images have
to remove object-highlight regions which lie outside th&een geo-referenced so that each pixel has a resolution of 0.08
acceptable size range. It will also remove object-highlight 0.08 m. As Fig. 8 shows, the model succeeds in identifying
regions which do not lie in close proximity to a shadow regiofilll the objects in both images (the objects are marked white in
by defining a maximum allowed distané,..... The set limits the segmentation), offering no false alarms.
for these techniques need not be rigidly defined and could beAn important part of evaluating an object detection system is
made case-specific. For example, if the model was lookirig test the model on images containing no objects. Fig. 9 con-
for tethered mines, both the shadow potential (s) and the tains two real sidescan sonar images where there is a high level
post-segmentation distande,,,.. could be altered to detectof clutter but no objects. These images have been geo-referenced
the expected signature left by such a mibg,., was set to 5 where each pixel has a resolution of 0.24%.15 m. As can be
pixels in this model. seen, the detection model correctly identifies that there are no
1) The Size of the ObjectModel parameters®, = objects present regardless of the high amounts of clutter. An-
{linin, lmax } describe the minimum and maximum size of poether complex image containing sand ripples and clutter but no
tential objects being searched for by the model. The maximuhjects is shown in Fig. 10. This image has resolution 6<08
and minimum dimensions of each region were calculated By08 m, with the detection model again correctly identifying no
ensuring each pixel labeled as object-highlight & ¢,) was objects.
assigned—+m>* and ™", These equate to the maximum and Fig. 11 contains two real sidescan images taken from another
minimum run length of object-highlight pixels through eaclrial. The difference in appearance between these images and
pixel z, = es, considering only vertical and horizontal runghose in Figs. 9 and 10 is quite obvious, highlighting the need
of pixels. As the images were geo-referenced previously, theése a robust detection system to cope with the large variation
run-lengths could be equated to the physical dimensions of thehe appearance of sidescan sonar images. The first contains
object. To ensure that each pixel within an object-highlightnly one object which the model correctly identifies. The second
region was assigned the same dimensions, a simple iterateatains multiple objects for which we have no ground truth data
labeling algorithm using a mode filter was carried out a®sults. However, the results obtained agree well with a skilled
illustrated in Fig. 7. operator’s interpretation of the image. It should be noted that
2) The Distance From the Object Region to the Nearestese two images are not geo-referenced as no navigational data
Shadow RegionEach pixel withzs = eq(object-highlight)  were available. The images have therefore been assumed to have
was given a minimum distancé™" to the nearest shadowa pixel resolution of 0.0& 0.08 m.
region to the right (port configuration). The labeling algorithm Fig. 12 shows a final real sidescan image. The image contains
described in Fig. 7 then ensured that every pixel within dur mines lying on a sand ripple seabed surrounded by large
object-highlight region was assigned the same distance valuamounts of clutter. The images has been georeferenced so that
Once each pixets = eqx(object-highlight) had been labeled, the pixels have a resolution of 0.08 0.08 m. The detection
regions which did not conform to the model could be simplynodel successfully detects three of the mines along with several

Mode Filter

iterate until no changes

Its

G. Postsegmentation Processing
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(b)

Fig.8. (a) Syntheticimage containing two mine-like objects and the detection-orientated segmentation resultidentifying all objects t{bjrBagénentaining
four mine-like objects on a complex seabed and the detection-orientated segmentation result correctly identifying all objects.

{b}

(a} (b)

Fig. 10. (a) Real Sidescan image containing no mines but high levels of
clutter and complex seabed types. (b) Detection-orientated segmentation model
correctly detecting no objects in the image.

therefore being labeled seabottom-reverberation. This caused
the post-segmentation phase to remove the fourth mine as it had
no accompanying shadow region. The false alarms detected all
have sizes and signatures comparable to a mine-like object and
are a result of the image containing a lot of object-like clutter.
With the final three-tier classification system, it is hoped that
these detections will be removed after the classification phase
(see Fig. 1). Using the classification stage to remove false alarms
could eventually allow the postsegmentation process of the de-
tection model to be relaxed, thereby ensuring that the fourth
mine in Fig. 12 is not removed.

Fig. 9. (a) Real sidescan image containing no mine-like objects and t eSummar
detection-orientated segmentation result which correctly detects no objects:. y
(b) Another real sidescan image containing no mine-like objects and the This section has introduced an automated detection a|g0_

detection-orientated segmentation result correctly identifying no objects.

rithm which conducts a detection-orientated segmentation of
the image using an MRF model along wighpriori spatial
information on the expected signature of mines in sidescan.

false alarms. The failure to detect the fourth mine arose from tfibe model has been tested on real and synthetic images, both of
region behind the object having a relatively high gray levelhich contained clutter and a variety of seabed types. Results
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(a}

(b)

Fig. 13. (a) Sidescan image containing three mine-like objects. (b) Detection-
orientated result successfully detecting the three objects. The images have been
altered to be the same size for visual purposes.

IV. EXTRACTING THE OBJECT FEATURES

After a mine-like object has been detected, its shadow can be
extracted and used later in the classification process (Fig. 1). If
the shadow of the object can be matched to the shadow from a
well-known mine shape such as a cylinder or a truncated cone,
the object’s shape can be correctly classified and identified as
a mine. For this process to be possible, it is necessary to first
obtain an accurate segmentation of the shadow.

Several models have been proposed for extracting an object’s
shadow [25], [23], [21] which offer good results on flat seabeds
but can yield poor results when complex seabeds such as sand
ripples are involved. This is because the shadows due to the
Fio 11 real sid ) i bioct and the det t.sand ripples are generally described by the same statistics as
e oo e e, . S, 21, e 488 oblect's shadow, ofen leading o inacurate segmentations.

sidescan image containing multiple objects as well as the detection-orientaldd€ C0-operating Statistical Snake (CSS) model described here
segmentation result which correctly identifies all objects present. extracts both the object-highlight and the shadow. While the

use of the object-highlight for classification purposes is limited,
the knowna priori information on the relationship between the
highlight and shadow can be used to ensure that the shadow seg-
mentation is accurate. The CSS model approximates the image
as three homogeneous regions—object-highlight, shadow and
background and so uses two statistical-snakes [35] to segment
both the object-highlight and shadow. Ta@riori information
between the object-highlight and shadow is used to constrain the
movement of the snakes so as to achieve accurate segmentation
results regardless of the seabed type involved.
If a mine-like object has been detected using the model de-
scribed in Section Ill, some of the available information from
=) ) the detection result can be used to overcome the initialization
problem which is inherent in many segmentation algorithms. As
Fig. 12. (a) Real sidescan image containing four mines. (b) The detectidhie Size and position in the image of the MLOs are known from
orientated segmentatio_n regult s_how; that three of the mines have been detegigsl detection result, the CSS model can be accurately initialized
Several false alarms with mine-like signatures were also detected. . . . L : .
by considering the label field. This is demonstrated in Figs. 13
and 14. Fig. 13 contains a reduced, raw sidescan image and the
were very promising with false alarms occurring only in onénal detection result showing three MLOs. Fig. 14 contains the
image where either the seabed or clutter presented a mine-kgracted label field for each of the objects as well as the initial
signature. This would suggest that a texture-based model woaltt final segmentation results of the CSS model. The initializa-
be useful to complement the spatial-based model presentie of the object-highlight and shadow boxes was conducted by
here to provide a complete automated unit. first restricting the two snakes to a rectangular form and using

(h)
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Fig. 14. (a) Label field mugshots of objects detected in Fig. 13 using the MRF detection model. (b) Initialization of the CSS model using label field.
(c) Segmentation result using the CSS model.

a term that considered the homogeneity of the object-highlight The Statistical Snakes

pixels and shadow pixels within the object-highlight and shadow

snakes, respectively, as well as the boxes’ position with respecf:SSume that the observe.d scene (the raw sidescan ingage)
to the center of the object. This ensured confident initial cond® COMPosed of three areas: object-highlight, shadow, and back-
tions for the CSS snake every time. ground, of which we wish to segment the object-highlight and

Ideally the detection CSS models should be completely jaadow regions. We consider the image- y(i, j) to be com-
tegrated, as demonstrated in Figs. 13 and 14, with the detBesed ofN; x N; pixels where the highlight's gray levels
tion result providing the initialization step for the CSS snake#e shadow's gray levelp, and the background pixels are
However, due to the sensitivity of the data involved, mine infssumed to be uncorrelated and halg N,,, and N, pixels,
ages used for test purposes are often provided as mugsh@gpectively. All three regions are described by probability den-
having already assumed that the object has been detected. $itjsfunctions (pdfsp#*, p#», andp*> whereyuy, p,,, anduy, are
is the case for the rest of the data presented in this sectiorthg parameters of the three pdfs.
this paper. We define a template window functiow = {w(i, j)|

For ease of notation, the raw data mugshots of the mines wWill j) € [1, N;] x [1, N;]} which defines the shapes of the
be referred to ay = (4, j), specifying a row and column two snakes at any given time. Defining(i, j) to be equal
position of each pixel instead of thg notation used to refer to 2 inside the highlight, 1 inside the shadow, or O every-
to a specific data pixel in the detection model. where else, the image becomes composed of three regions
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U = {(i, ) |wli, j) = 2, Q = {(G, )| wi, j) = 1}, ©0
and$, = {(¢, j) |w(i, j) = 0}. The observed image can be
viewed as the sum of the three components Tmin B e e

y(L,J) = h(LJ)6w(LJ)=2 + p(LJ)(Sw(LJ)Zl + b(LJ)(Sw(LJ)ZO ........................................................................
(19)

whereh(s, j), p(¢, j), andb(s, j) are values drawn from their
respective probability distributions aidds the Kronecker delta
function. Without anya priori knowledge, the best is chosen
by maximizing the likelihood

Ply [w, pn, ppy o] = POxn [ 1n)P(xp [ 1) P (X0 | 115)
(20) N

Jmax

'
'
'
1
1
|
'
|

where
imin@) Ima)
Plxulp) = ] "l )l (21)

(i, ))EQ Fig. 15. Explanation of how the 2-D summation over the image gray levels

can be modified to a 1-D summation around the snake.
The likelihood is expressed as a product of probabilities

as the distributions are assumed to be uncorrelated amdConverting the Likelihood to a 1-D Problem

Xu:y(L7J)|(L/ j)EQu(U:}L7p07”b). I 1
The likelihood function in (20) depends on the parametersThetermSH’“ b, andp, need to be computed every iteration,

. : making it important that the calculation is fast.
of the probability functions as well as the template The . - .
paramerzterm wh);reu € {h, p, b} are computed uZing a max- 1) Object-Highlight and Shadow Region&or the shadow

imume-likelihood approach. Assuming that the three regioﬁsnd highlight regions, which are enclosed by their respective

are described by exponential distributions allows the parame?@takes and by considering Fig. 15, the first term on the

estimatesu,, v € {h, p, b} to be injected back into (20) to right-hand side of (23) can be written as

obtain an expression for the likelihood that is simply dependent

on the sums of gray levels [35]. However, the detection model 1 Z (i,7)% =

described in Section 1l modeled the shadow, background)N, (w) LR

and object-highlight regions using separate noise distributions

(Gaussian, Rayleigh, and triangular, respectively). Allocating

an exponential distribution which can accurately model aeltlllowing the inside summation to be written as

three of these distributions is a difficult and unlikely task:

For simplicity and based on the assumption that the region§:imax(j)

are statistically quite separated, the Gaussian distribution was Z y(i, §)% = Flimax(7), j] — Flimin(j) — 1, 5] (25)

chosen as the most suitable exponential function to descrlb%im )

the three regions. While not exact, the results demonstrate

that this assumption is sufficiently valid to provide accuratgnere

segmentation results. This leads to the log-likelihood function

o) Flr,nl = yli, n)”. (26)
lgauss(y, W) = =NpH(01,) — N H(0,) — Ny H(6) (22) =0

This term F[r, ] can be deduced for every pixel before the

segmentation process, so similarly, if we expré§s, n] =
2 > _,y(i, m), (23) can be rewritten as

1 J=Jmax 1=imax(J

)
Ny 2 > i)

J=Jmin 1=imin(J)

(1, 7)EQy
(24)

whereH (¢) = log(q) and

1

eu — .. N2 - -
w22 Y W 2, 1) RIS
) u 1,7 i . . . . . .
a'u: F'maxl W, _F'min( _17/
23) No(w) ]:Jz (Flimax(5). 4] = Flimin(5) = 1.4])
. 2
where N, (w) is the number of pixels in region andu € 1 Igmax
{h, p, b}. An iterative scheme must now be used to maximize ~ — No(w) > (Glimax(4): 41— Glimin(5) — 1, 1)
this equation and produce the final segmentation result. To lower " J=Jmin
the computation time, the two-dimensional (2-D) summations (27)

in (23) can be converted to a one-dimensional (1-D) summation
around the borders of the two snakes. foru € {h, p}.
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-110500

TABLE | loglmean prior prob] ——
RELATIONSHIP BETWEEN C'(i, 7), (i, j) AND ¢(i, §)
FOR THE TWO SNAKES, HIGHLIGHT AND SHADOW 111000 |
snake C(i,7) | 7@ 5] | <G, 5)] el
highlight | 1 F[i,j] Glij] o0 |
highlight | -1 F[i-1,j] Gli-1,j] 12500 |-
highlight | 0 0 0 e
highlight | 3 yz(;d') y(;,j)
shadow 2 F[I,J]/ 2 G[I,J]/ 2 ° * « dlffln:i;hlighi/sha:wmeang::ylevds % = °
shadow -2 F[i'laj]/2 G[i—l,j]/2 Fig. 17. The form of the log of the prior likelihood which awards large
differences in the mean gray level of the regions inside the two snakes.
shadow ) 0 0
Y2 (4.4) y(i,4)
shadow | 4 1 1 and similarly
(4,5)€Q (t,9)€y (4,5)€Qn

- > yli,j) (30)

(i,7)€Q

to allow the calculation of),.

5 5005 2 C. Modeling the a Priori Information
HIGHLIGHT SNAKE SHADOW SNAKE

As in the detection mode4 priori information can be mod-
Fig. 16. Description of how the Huffman encoding system varies between teéed to improve the model’s capability to successfully segment
highlight and shadow snakes. This is so the model can distinguish betweenm§ highlight and shadow. The CSS model uses two different
separate regions. . . ) . .
P 9 priors to award certain snake configurations:
« a high difference in mean graylevel between the highlight

] ) and shadow snake;
This can be expressed as a summation around the snakes scenarios where the highlight snake and the shadow snake

boundaryb,ouna to give have similar centroid positions and similar heights.
) These two priors and their effects on the shadow extraction
0, = C, (i, j will now be considered.
Nu(w) 622(1 (- e 4] 1) The Mean Prior: Object highlights are generally

2 amongst the brightest regions of an image while shadow
1 .. .o i i
_ {N - Z C(, 5)¢[G, J)]} (28) regionsare amongst the darkest. A prior term of the form [10]
“ 8

bound

log[Pmean(W)] = ptanh <la(mA - ,8)> +c (31)
for u = {h, p} [35]. C(i, j) is the associated Huffman 2
Encoding for each point on the snakg(z, j)] and~[(4, j)]
are defined in Table I, and the coding system is summ@as used to award scenarios where there was a large difference
rized in Fig. 16. Note that the Huffman codes have bednthe mean gray level of the pixels within the two snakes.
arbitrarily chosen here s6%,(i, j) € {-1,0, 1, 3} and is the difference in the mean gray level, variableandc are
Canaa(is j) € {=2, 2, 5, 4} where the codes were computed!sed to ensure that this log function lies in the same dynamic

by vector considerations as in Chesnatidl. [35]. range as the log-likelihood term of the statistical snake while
2) The Background RegionOnce#;, andd, have been cal- controls the tanh functions crossover location, andontrols
culated, it is simple to dedudg by noting that the crossover rate. The general function has the form shown in
Fig. 17.
o . s As Fig. 17 demonstrates; o under a given value are all clas-
Z y(i, j)" = Z y(i, J)° — Z y(i, J) sified as equally “bad” whilen over a given amount are all
(5, 7)€ (i, 7)€y (&, 7)€ classified as equally “good.” The transition between theses two

- Z y(i, 7)* (29) statesis controlled by, the crossover rate, which has been se-
(G, )EQ, lected in this case to give a smooth change. The shape of this
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Fig. 18. A priori knowledge on the relationship between an objects highligh
and its shadow can be used to constrain the two snakes. (a)

prior term stops the two snakes from simply collapsing to eng
sure a highna.

2) The Position Prior: The presence of sand ripples ca
often lead to an incorrect shadow extraction due to the rippl#
shadows corrupting the results. However, in the cases whe
an object highlight is present, it is possible to become mor (c) (d)
assertive as to which shadow regions are due to the object and

i i ; H b op Fig. 19. (a) Two images containing mines with initial CSS snakes shown.
which are not. We first define the Vanablg‘é’ J¢ hn, and (b) Segmentation result obtained using the SS model. (c) Segmentation result

h, as described in Fig. 18 wheyi¢ is they coordinate of the optained using the MRF/CS model. (d) Segmentation result obtained using the
center of snake = {h, p} andh, is the maximum height of CSS model.
shaket such that

,t 1 ) search through the parameter space for estimating the dynamic
Je =N, Jr (32) range of the likelihood model as well as finding a favorable ini-
tial starting point for the two snakes.

whereét is the boundary of snake NV, is the number of pixe|5 As with all deformable models, a gOOd initial Starting pOint is
on the boundary edge, ad = max{j,} — min{j,} where highly desirable. If the mugshot image of the object came from

r € §t. We can now define the differencesj. andAh where  the detection model detailed in Section Ill, an accurate initial-
ization of the CSS model is possible using the label field, as

Aje =4l — 47 (33) shown in Figs. 13 and 14, where accurate size and positional
Ah = hy, — hy. (34) data can be extracted. However, for the data shown in this sec-
tion for which noa priori size or positional information is avail-
The ideal scenario is when bothj. and Ah are equal to able, the initialization of the two snakes is carried out while the
zero and so we define the allowed spread in these variablegésr constants are being estimated and is determined by using
a Gaussian distribution with mean 0. Assuming that the distthe snake positions which maximize the difference in the mean
butions of Aj. and theAh are independent of each other, thgray levels of the two box-snakesx®*.
combined log prior term can be written as a sum of the indi- Using the rectangular snakes, the log likelihokigt, w)
vidual log terms to give from (22) was calculated iterativel\.,,;, and L,,., were
allocated the lowest and highest log likelihood found, re-
10g[Pyosition(W)] = C — t1]Aj.|* — 12| Ah|*  (35) spectively. Defining the largest difference in log likelihood

) L = Ly — Ly, allowed the prior constants to be defined
wheret; andt, and are constants. These determine the pen fy

for moving away from the ideal case where badith. and Ak

i jor lies i 1 1 2
equal zero(’ is a constant to ensure that the prior lies in the ¢=Lom+ AL p==AL f=m2> (36)
same dynamic range &y, w). 2 2 3
3) .Deter_mmmg the Prior Con_stantsBoth the mean and the. 0=05 C=TLyu 1 =t= ' 37)
position priors discussed previously contain constants which 10

need to be determined before the segmentation can begin. Th|§ :
: : ) . hese values ensured that prior terms had roughly the same
is carried out as a presegmentation calculation. The two snakes _ . oo L
are initially restricted to only four points each and kept in rec yhamic range as the log likelihoddy, w). This is important

y a0 only | P . . P or ensuring that the relative importance of the different terms
angular form. A quick iterative process is carried out where

the rectangular snakes’ positions and dimensions (height wid:fﬁn be controlled so that the log-likelihood tetfy, w) can
9 P gnt, er‘main the dominant segmentation term while the prior terms

position, and distance apart) are altered randomly within an al- : ; . .
lowed range. At each position, the log-likelihood of the statisgl-lmply constrain the snakes movements in a sensible manner.
tical snake is measured using (22). To simplify this process, b%h
boxes have the samge and heighth while the lengths of the
highlight and shadow boxes are keptiaand3h, respectively. ~ The segmentation process has to maximize the posterior
This restricts the size of the parameter space to four parameféfietion

(je, 1281, b, andd) whereihsh is thei coordinate of the center

of the highlight box and is the distance between the two boxes/ (Y: W) = Ao 10g[Preg (w)] + (1 — Ao)(A1 log[Fposition (W)]

This simplistic box model for the two snakes allows a thorough + A2l(y, w) 4+ (1.0 — A1 — A2) log[Pmean(W)])  (38)

The Segmentation Process
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(a) (b) (c) (d)

Fig. 20. (a) Three images containing mines with initial CSS snakes shown. (b) Segmentation result obtained using the SS model. (c) Segméptattamecsul
using the MRF/CS model. (d) Segmentation result obtained using the CSS model.

where log[P..s(w)] is a smoothing prior [35] and the performance of two alternative models. The first is a single
Ar k€ {0,1,2} are weights used to control the impor-statistical snake (SS) model as described in [23]. The second
tance of each term. is a classical-based snake technique as discussed in [24] where
A multiscale maximum approach was used to segment ttie image is first binarized using a two-class hierarchical MRF
highlight and shadow regions where both snakes were initializawdel (MRF-CS). The snake is driven by an energy term which
with only four points. The iterative approach randomly selectscansiders both the homogeneity of shadow pixels inside the
point after which its displacement from its old position is agaisnake and the proximity of the snake to the edges of the bi-
determined randomly. The displacement uses two 1-D Gaussiwtized image described by an edge potential field [25]. As an
proposal distributions such that, for thelisplacement;,..,, = aside, it should be noted that the MRF-CS model generally pro-
io1d + ¢ Whereg is drawn from a Gaussian with meéayq and vides a smoother contour than the SS model due to its edge po-
standard deviatiom = 3. After each displacement, a checkential term. Rather than insisting that the MRF-CS snake lie
must be carried out to ensure that none of the snake segmelitgctly on the shadow boundary, the edge potential term allows
cross (the model operates under the assumption that the snalkesnake to simply lie in the proximity of the edge and so gen-
are simply connected) after which the decision on whether ¢sally acts as a smoothing agent to the model.
keep or reject the new configuration is made. The initial starting point for the CSS model’s snakes are also
New points were added when convergence had been achiese@wn. As discussed before, when using raw sidescan data, the
with the present set of snake points (this was defined to esults from the detection model outlined in Section Ill can be
reached when the best fit solution had not changed for 200 tsed to accurately initialize the CSS model. However, as most
erations).N new points were added between pointaindm  0f the data was obtained as mugshots, the CSS model was ini-
where N was the integer solution @, ,,,)/10, d,, ., simply tialized using the method described in Section IV-C3 while the
being the distance between the two points. This allows the snakior constants were being estimated. While this gave a poorer
progressively more flexibility as the algorithm proceeded. Adnitialization point than using the detection result, the model is
curate segmentation results were seen to be obtained after 8fith successful in obtaining the correct segmentation. The other
additions of points. two models only segment the shadow and so were initialized
Although all three terms lie within the same dynamic rangéising the CSS model’s shadow initialization position.
it was important that the statistical snake tdfjy w) remained  Fig. 19 contains two images of objects lying on a flat seabed.
the dominant term\; and\, were maintained at 0.2 throughoutThe first image contains an object with clear object-highlight
while )\ was initialized at 0.0 and incremented by 0.05 evegnd shadow regions ensuring both the SS and the CSS models
time new points were added. This ensured that the snakes m@iipvided an accurate segmentation result. The MRF-CS solu-
tained a smooth form as they were given more flexibility dion detects a smaller shadow region as the MRF two-class seg-
movement. mentation removed part of the shadow region. The second image
contains a sharp drop in graylevel with range as well as an ob-
ject with very little highlight. Both the SS and the CSS model
provide good segmentations (even though there is no distinc-
Results are given on seven real and two synthetic sidesd¢&e highlight region) while the MRF-CS model gives a poor
images to allow the model to be tested over a large rangesgigmentation. This was due to the extreme range variation in
conditions. The performance of the CSS model is comparedgaylevel leading to a poor MRF two-class segmentation.

E. Results
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(b)

Fig. 21. (a) Four images containing mines on a sand ripple seabed with initial CSS snakes shown. (b) Segmentation result obtained using the SS model.

(c) Segmentation result obtained using the MRF/CS model. (d) Segmentation result obtained using the CSS model.

Fig. 20 contains three noisy images of objects (one cylinden MRF model to provide accurate detection results even when
and two spheres) lying on a flat seabed. All three objects haaege amounts of clutter were present. The model provides an
either an indistinctive or no highlight region. However, thénteresting alternative to the current trend of trained detection
shadow regions are relatively clear and all three models provia®dels as in [1], [9], [2], and [14], making it applicable for a
accurate shadow segmentation results. wide range of data without the problem of requiring suitable

Fig. 21 contains two real and two synthetic images where ttraining data. This model was tested on both real and synthetic
objects can be seen lying on sand ripple seabeds. In all falata offering good results in all cases.
cases, both the SS and the MRF-CS models provide poor segonce an object has been detected, its shadow can be
mentation results as they cannot distinguish between the objextracted for future classification. A novel CSS model was
shadow and the ripple shadows. The CSS model, constrainegbysented which extracted both the object highlight and its
its priors, achieves good segmentation results in all four caseshadow. This technique demonstrated how the inclusioa of

priori information could again provide more accurate results.

F. Summary Specifically, the problems inherent when considering complex
A novel CSS model has been presented for extractiﬁgabed backgrounds as noted n [17] gnd [24] did not impact
. : : : te accuracy of the results obtained using the CSS model. The
the shadow of unknown objects in Sidescan imagery fi . -
e . : CSS model was favorably compared with a statistical snake
future classification. Whilst the extraction of the shadow is .
. ; model and a MRF-based model with results presented on real
relatively simple on a flat seabed, the presence of clutter or :
) T . . nd synthetic data.
ripple shadows confuses the situation leading to inaccurate

segmentations using standard technigéepriori information Although this paper has concentrated on the detection of
9 9 quep MLOs in sidescan imagery, suitable alteration of the priors

on the expected S|gnature of Ob,JECtS in_Sidescan 'Magetyolved would allow the described techniques to be applied to

was used to constrain the snakes’ movement so that accurgte .. L . .

. . r fields such as pipeline or trawling scar detection. Future

segmentation results could be obtained regardless of the seabe . .

. ; ; .~~~ research will concentrate on using the CSS model results for

type involved. The CSS model's extraction of the highlight,” ..~ . ; !
lassification purposes as well as developing a texture-orien-

regionis a'?o US?fUI n the Ia’Fer cIaSS|f|c§1t|op phasg, where taet‘ed detection model thereby producing the building blocks
size and orientation information of the highlight region can o
or a complete automated classification system.

used to constrain the possible object shapes which could have
produced the observed shadow region.
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