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Abstract

Planners provide extremely powerful functionality, allowing
the user to state the goals of a system, and allowing it to for-
mulate the specific actions which are required to complete
them. They can act more powerfully still when allowed to
continually reassess a plan concurrently with its execution.
What is required in this instance, however, is a bridge to al-
low the output of the planner to be directly implemented by a
vehicle system, without the need for further offline process-
ing. Such a system is presented here, it’s implementation de-
scribed and successful results relayed.

Introduction
Planners and schedulers provide extremely powerful func-
tionality and allow for the user to simply state a set of goals
and have the system work out which actions should be car-
ried out in order to complete them.

Even more powerful functionality is provided when a
planner is used to constantly reassess a plan which is con-
currently being executed. This requires additional infras-
tructure, however, as a system is required to convert the out-
put of the planner into instructions which can actually be
carried out by an autonomous system, without the need for
additional offline processing. For example, a planner may
output the action that a vehicle should move to a different
location. This location must be resolved to an actual phys-
ical location, and then the task of navigating the vehicle to
this position begun, carried through, and then completed.

This paper describes components within the executive
layer of an implementation of a hybrid, or three layer, ar-
chitecture. These components provide two levels of abstrac-
tion. Firstly, they allow an instance of a particular action in
a high level symbolic plan to be converted to the instructions
required for the vehicle to directly carry it out. A generalised
manner for specifying this correlation is also supplied. Sec-
ondly, an abstraction is provided over the actual capabilities
of the vehicle, particularly with respect to differing sensor
and actuator payloads.

The system presented here is designed to fit into the larger
framework for user experience based plan creation posited
in (Johnson, Patron, and Lane 2007). Since the publication
of this paper, various advances have been made towards the
completion of this framework, including the development of

a dynamic planning system, a schema for multi modal input
and various user interface based components. The majority
of this is outside the scope of this paper, however.

The remainder of this paper is divided into four sections.
Firstly, some of the previous work in this field will briefly
be described. Next the implementation of the system will
be covered, this will be followed by the results which have
been gained from using the system and lastly intended future
work will be described.

Previous Work
Planning is one of the fundamental artificial intelligence
problems with one of the first and most often cited systems
being the STRIPS system (Fikes and Nilsson 1971). The
technology has developed significantly since this system
was first created, though. An excellent illustration of this is
demonstrated each year when the International Conference
on Automated Planning and Scheduling (ICAPS) hosts the
International Planning Competition (IPC). Entrants to this
competition take input from the Planning Domain Descrip-
tion Language (or PDDL, see (Gerevini and Long 2005)) for
various problems and compete to create the most complete
and efficient plans, trying to do so as quickly as possible.
Notable due to it’s influence on this project is the SGPlan
system (Chen, Wah, and Hsu 2006) which is based on the
Metric-FF system (Hoffmann 2003). As the IPC champion
at the time this research began, it was selected as the basis
for the planning components of the system.

The IPC largely focuses on advances in planning technol-
ogy itself, rather than the technology for integrating plan-
ners to real systems. A lot of work on continual planning
across multiple systems has also concentrated on the plan-
ner itself, rather than on the actual means of taking advan-
tage of the output from the planner ((desJardins et al. 2000),
(Nau, Smith, and Erol 1998)) or has focused on the imple-
mentation of bespoke planning solution for the control of
particular vehicle systems (Pêtrès et al. 2007).

Hybrid, or three-layer, architectures have become one
of the the most popular and successful approaches to au-
tonomous vehicle control. They are able to deploy the
strengths of both reactive and deliberative architectures,
whilst minimising the weaknesses found in both. Although
there is some difference in the naming of the three lay-
ers, and the components which are placed in each, certain
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Figure 1: Simplified Hybrid Architecture.

commonalities exist across most (if not all) implementa-
tions. Figure 1 shows a representation of a hybrid archi-
tecture, which has been somewhat simplified for illustrative
purposes.

We name our three layers deliberative, executive and func-
tional. We restrict the functional layer to containing only
components which control the physical systems of the vehi-
cle. Reactive control operates within this layer, allowing the
system to react quickly to sensor data when required. One
example of this would be an emergency evasive manoeuvre
in response to the sudden appearance of a large object in
front of the vehicle (or at least the detection of one).

We also limit the deliberative layer to containing only the
planning components. Thus the deliberative layer receives
changes to the vehicles perception of the world (represented
at a symbolic level) and outputs a plan which is designed to
achieve the mission goals.

As such, all other components required to make the sys-
tem work are contained in the executive layer. These may
include, but are not limited to: an autopilot, high level sen-
sor processing and fusion, navigation, mission monitoring,
action selection, and a system to convert high level actions
into commands which control the vehicle’s physical systems
(which is what we present here).

An example of a multiple robot control system which op-
erates in the executive layer was demonstrated in (Sotzing,
Evans, and Lane 2007) (with results from trials with mul-
tiple real vehicles to be published later). This system is
capable of carrying out a plan constructed in the custom
BIIMAPS plan representation (Sotzing, Johnson, and Lane
2008), as well as limited modification of such a plan. How-
ever, this system relies on the plan being made up of a set of
built in behaviours at present.

A more in depth review of hybrid architectures, together
with a recent implementation, can be found in (Ridao et al.
2000).

Implementation
Figure 2 shows the complete architecture. The remainder of
this section is divided into subsections which describe each
of the elements of this diagram in more detail.

The Dynamic Planner
The architecture described here is designed to facilitate plan-
ner based control of autonomous systems, and as such a
planner forms its uppermost layer. A dynamic planner has
been implemented for the purpose, but the details of this im-
plementation are beyond the scope of this paper. The im-
portant facts about this system related to the architecture de-
scribed here are:

• It takes a compiled representation of the Planning Domain
Description Language (PDDL) as input.

• At present the system handles basic propositional plan-
ning, with no support for metric or temporal planning

• It produces partial order plans in the form of a list of pred-
icate propositions.

• It is able to control multiple distinct autonomous vehicles
and is completely decentralised.

• It is able to change the plan in response to changing cir-
cumstances.

It is important that additional information should be at-
tached to many of the PDDL constructs used in the planning
system, a facility which PDDL itself does not allow for. To
this end, an XML schema was created, which uses XML
tags to represent atomic constructs (such as predicate and ac-
tion definitions), but raw PDDL (enclosed within XML tags)
to represent compound clauses, such as goals and precondi-
tions. The most important function provided to the control
system is the attachment of the data required to tell the lower
level systems how to implement each action. An example of
one of the used action definitions is shown below1:

<action name="move">
<parameter name="who" type="auv"/>
<parameter name="to" type="location"/>
<precondition>
(and (forall (?what - locatable)

(not (at ?what ?to)))
(not (imobilised ?who)))

</precondition>
<start>
(forall (?from - location)

(not (at ?who ?from)))
</start>
<end>
(at ?who ?to)

</end>
<control file="MoveControlScript.groovy"/>

</action>

This replaces the following definition in standard PDDL:

1In practice these definitions contain considerably more infor-
mation, which is used for user interface purposes, but this have
been stripped out here for clarity of meaning.
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Figure 2: The architecture for a planner based control system for multiple real or simulated AUVs

(:action move
:parameters (?who - auv ?to - location)
:precondition (and (forall (?what - locatable)

(not (at ?what ?to)))
(not (imobilised ?who)))

:effect (and (forall (?from - location)
(not (at ?who ?from)))

(at ?who ?to))
)

Another difference which can be seen here is that the ef-
fects of each action are separated into those which happen at
the start, and those that happen at the end. Although it has
been previously noted that temporal planning is not used,
they are separated to allow the control system to more ac-
curately reflect changes in the real world. When passed to
the actual planner, the start and end effects are simply com-
bined. However, this methodology allows some of the con-
sequences of the action to be asserted in the system’s copy of
the world state as soon as an action starts, and the remainder
as soon as it finished. In the above example, an autonomous
vehicle is asserted to have left its current location as soon
as it begins to move towards another, thus if a replan is trig-
gered when the vehicle is halfway between two locations the
world is accurately represented. The vehicle is then asserted
to be at its new location as soon as it arrives.

The Action Selector
Below the dynamic planner in the architecture is the action
selector. In out current implementation, this is very simple
and merely selects the the first action in the plan which is
currently available (i.e. is not required to be preceded by
any other actions in the plan) and is intended to be carried
out by the current agent. A more complex system, such as
(Sotzing, Evans, and Lane 2007), might perform an analysis
of the current state of the world and select an action intended
to lead to the most efficient plan execution (by one metric or
another). In either case, the result is essentially the same

from the point of view of the next layer: an action repre-
sented by a predicate term and a set of parameters is passed
down.

The Behaviour Based Layer
The next level down in the architecture is a behaviour based
system. This is based on instances of Java (or Java compati-
ble) classes which must implement the methods specified in
the following interface:

public interface BehaviourScript {
public void init(PlatformAPI platform,

DataAPI data,
String[] parameters);

public String update(PlatformAPI platform,
DataAPI data);

public void clean(PlatformAPI platform,
DataAPI data);

}

The init method initialises the script with the parame-
ters which are passed to it. These parameters are the same as
the parameters of the predicate term which represents the ac-
tion the script is intended to carry out. The second method
is the update method, which is run by the control system
each times it cycles. This sends out the necessary instruc-
tions to the vehicle systems and has a return value which
tells the control system whether the action still needs to run
or has completed. In the current system this method will
be called approximately five times a second. Finally, the
clean method runs when an action has finished and re-
leases any resources the script was using to implement the
action, as well as leaving the vehicle in a stable state.

The Script Based System and Below
The next layer down in the architecture is the script based
system. This layer provides some basic backbone, allowing
scripts in a Java Virtual Machine compatible language to be



executed. To facilitate this, it also provides access to the
two APIs2 which are supplied to the methods specified by
the behaviour based system. These APIs are detailed in the
following sections.

The Platform API
The first of the APIs mentioned above is the platform API.
This gives the script the control it needs over the vehicle
systems, such as requesting movement to specific locations
and changing the mode of sensors and actuators. The plat-
form API also provides feedback from the vehicle systems,
such as the vehicle’s current location and heading (in world
frame) and the current mode of the sensors and actuators.
All data sent to and received from sensors and actuators is
routed through the sensor and actuator managers. These are
simply small databases which index each of the sensors and
actuators by name, allowing information to be passed back
and forth as quickly as possible.

Vehicle navigation is controlled via waypoint requests. A
waypoint represents a position in space, defined relative ei-
ther to the vehicle or a fixed origin, a set of tolerances which
decide when the vehicle has achieved the waypoint, a set of
enables which define which axes the controller should take
notice of, and also (depending on the navigation mode) a
target attitude and a travel speed.

Control of sensors and actuators is achieved through very
simple mode change requests. These modes are simply de-
fined as text strings. The present implementation requires a
driver for each sensor or actuator to be used in a real vehi-
cle system to be implemented in Java. For simulated trials
the sensors and actuators are specified via XML, and it is in-
tended that this system should also be extended to allow the
control of real sensors and actuators to be defined similarly.
Methods are provided by the Platform API to allow the sys-
tem to request a mode change and also to query the current
mode of a sensor or actuator.

In simulation, the components of the architecture can
be directly connected and information passed via simple
method calls. On a real vehicle this is often not possible
or even desirable, as different components below the level
of this archtecture (such as navigation or SLAM3 systems,
and low level drivers) may be implemented in different lan-
guages, or distributed across multiple physical systems. For
this reason, the system uses an UDP packet based commu-
nication system called OceanSHELL to communicate with
everything below the level of the Platform API.

The Data API and World Model
The second of the APIs is the Data API. This provides the
script with access to the Data Server, allowing it to ob-
tain the locations, areas, scalar values and times to which
the existences in the world state relate. This API also al-
lows the script to add additional key/value pairs to the Data
Server, allowing some persistence of data between the dif-
ferent scripts.

2Application Programming Interface
3Simultaneous Localisation And Mapping

Input from the vehicle sensors is assumed to have been
fully processed before it reaches the control system. The
receipt of this data will also most likely change the world
state, either by adding new instances or predicates, or both
of these. It may also add or update elements in the Data
Server. As an example, the detection of a possible target
might result in a target instance being added to the world,
as well as a new location and an at predicate indicating
that the target is at the location. These additions suffice for
the planner to be able to adapt the mission accordingly. A
new co-ordinate might also be added to Data Server, indexed
to the name of the new location in order to provide a binding
to the real world.

Communication
In the presently implemented system, communication is
handled at a high level and consists of a set of algorithms to
synchronise the World State and Data Server of all agents.
These are currently at an early stage of development and are
beyond the scope of this paper.

Example Behaviour Class
The class used for the implementation of each action is spec-
ified in the XML definition. In the case of the examples
shown here, the classes are described in a language called
groovy (G2One, Inc. 2008), a dynamic scripting language
which can be compiled to pure Java at runtime. The back-
end needed to ensure that this functionality is available at
runtime is provided by the scripting layer. The groovy class
definition for the example used here is shown below:

class MoveControlScript
implements BehaviourScript {

LocalCoordinate3D waypoint
int number

void init(PlatformAPI platform,
DataAPI data,
String[] parameters) {

waypoint =
data.getVector(parameters[1])

number =
platform.getCurrentWaypointNo()++

platform.setTolerences(1, 1, 1, 10)
platform.setEnables(1, 1, 1, 1)
platform.absoluteWayPointRequest(
number, TRACK_MODE,
waypoint.getNorth(),
waypoint.getEast(),
waypoint.getDepth(), 0, 1f)

}

String update(PlatformAPI platform,
DataAPI data) {

if (platform.inPosition())
return "succeed"

platform.absoluteWayPointRequest(



number, TRACK_MODE,
waypoint.getNorth(),
waypoint.getEast(),
waypoint.getDepth(), 0, 1f)

return "continue"
}

void clean(PlatformAPI platform,
DataAPI data) {

platform.stay()
}

}

In this example, the class contains two member fields, one
for the vehicles destination and one for the number of this
waypoint. These are both initialised at the beginning of the
init method, the first by obtaining from the Data Server
the co-ordinate which is referred to by the second parame-
ter4 of the action predicate, and the second by obtaining the
current waypoint number and incrementing it. Next the tol-
erances and enables of the waypoint are set, indicating that
the vehicle must be within one metre of the destination for
the waypoint to be met and that all axes are to be used. Fi-
nally, the waypoint request itself is sent to the navigation
system.

The update method first checks whether the waypoint
has been achieved. If it has then "succeed" will be re-
turned and the action will complete. Otherwise, the way-
point request will be repeated and "continue" will be
returned.

When the clean method runs (on completion of the ac-
tion) the vehicle is instructed to hold its current position.

Summary
As can be seen here, the system provides two distinct lev-
els of abstraction. First of all, the actual vehicle systems are
abstracted in the Platform API, allowing the system to be
deployed across multiple vehicles with a minimal require-
ment for re-implementation of components, as well as al-
lowing the system to be deployed unchanged in simulation,
with simulated sensors and actuators taking the place of the
drivers for their real counterparts.

Secondly the system provides a higher level abstraction,
allowing to the simple propositional output of a planning
system to be directly carried out by a vehicle’s systems, pro-
vided that complementary class instances have been imple-
mented for each of the action types the planner is able to
produce.

Results
The system described here has been tested in two separate
sets of circumstances. Firstly the complete system has been
tested in simulation. Secondly, the lower levels have been
tested on a single real vehicle, with a simpler finite state ma-
chine based system taking the place of the replanning sys-
tem.

4Parameters are numbered from zero.

Figure 3: The Nessie III AUV passes through the validation
gate at SAUC-E 2008. Image courtesy of Yves Gladu.

Figure 4: The RAUVER AUV.



The system has been given extensive testing in simulation,
with the full dynamic planning system acting as its upper
layer. The actual Autopilot System used with the Nessie III
(see Figure 3) and RAUVER (see Figure 4) AUVs was used
as the navigation system and a full hydrodynamic model of
RAUVER used to give the control dynamics of the vehicle.
Additionally, a set of simple simulated sensors and actuators
were used to allow the vehicles to interact with the simulated
environment. The system performed perfectly in these cir-
cumstances, allowing two scenarios (one mine counter mea-
sures and one installation maintainence) to be completed,
and with sufficient efficiency to allow the simulation to pro-
ceed at up to one hundred times realtime5.

The lower level systems were used as the basis of the con-
trol system used for the Nessie III AUV (see (Cartright et
al. 2008) and Figure 3) as part of The Ocean System Lab-
oratory’s entrance into the Student Autonomous Underwa-
ter Competition - Europe (or SAUC-E) 2008. The dynamic
planning and action selection systems were replaced with
a much simpler finite state machine based system, as illus-
trated in Figure 5. Otherwise, the system was unchanged and
employed the same parameterised script based mechanism
for control of the vehicle systems. The finite state machine
was represented by an XML file, which gave each state as
the name of a script and a set of parameters. This more sim-
plified system was used as the task required of the vehicle in
the competition was based upon an entirely static environ-
ment, and therefore a replanner was not required and would
have led to unwarranted additional overhead. The employed
system proved to be extremely robust and flexible, helping
“Team Nessie” to take the first prize in the competition, as
well as “The THALES Special Award for innovation in de-
cision making autonomy”. Furthermore, the Nessie AUV
completed all of the tasks laid out as part of the competition,
making it the first entry in the competition’s history to do
so. Further information about the competition can be found
at the competition website (SAUC-E Committee 2008).

Future Work
The system as described here is essentially complete, bar-
ring any updates which are made to increase functionality (to
further expose particular vehicle systems for instance). Fur-
ther testing and deployment is considered desirable, how-
ever. The finite state implementation deployed on the Nessie
AUV is not suitable for the control of multiple robots, so it
is hoped that both the Dynamic Planner based system can be
tested on multiple real systems, and also that the DELPHIS
system (Sotzing, Evans, and Lane 2007) (also developed at
the Ocean Systems Laboratory) can be retrofitted to use this
architecture as its vehicle control backend.

It also intended that various improvements should be
made to the dynamic planning system which forms the up-
per layer of this architecture. These include, but are not
limited to, the improvement and field testing of the current

5Faster than realtime simulation is a key property of the system
described in (Johnson, Patron, and Lane 2007), and so the architec-
ture presented here was required to support this.

(extremely simple) communications system, and scope for
explicitly stated consequences for the failure of actions.
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