Recent Development in Superconducting Filters

(Invited Talk)

Jia-Sheng Hong

Heriot-Watt University
Edinburgh, UK
Outline

- Introduction
- HTS materials and substrates
- Recent developed HTS Filters
- Summary
Introduction

• The driving force behind the development of superconducting filters remains for mobile, satellite communications and some other niche applications.

• The extremely low resistance of superconducting materials has enabled the realization of miniature thin film filters with exceptional performances.
Introduction - HTS Filter Publications

Total 260+ in recent 10 years

Search from IEEE Xplore

Year

<table>
<thead>
<tr>
<th>Year</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996</td>
<td>5</td>
</tr>
<tr>
<td>1997</td>
<td>9</td>
</tr>
<tr>
<td>1998</td>
<td>13</td>
</tr>
<tr>
<td>1999</td>
<td>45</td>
</tr>
<tr>
<td>2000</td>
<td>25</td>
</tr>
<tr>
<td>2001</td>
<td>35</td>
</tr>
<tr>
<td>2002</td>
<td>30</td>
</tr>
<tr>
<td>2003</td>
<td>25</td>
</tr>
<tr>
<td>2004</td>
<td>20</td>
</tr>
<tr>
<td>2005</td>
<td>15</td>
</tr>
</tbody>
</table>

Dr. J.-S. Hong
Department of Electrical, Electronic and Computer Engineering
Heriot-Watt University, UK
Email: J.Hong@hw.ac.uk
Superconductors are materials which, when cooled below a certain temperature, exhibit a zero intrinsic resistance to direct current (d.c.) flow.

The temperature at which the intrinsic resistance undergoes an abrupt change is referred to as the critical temperature or transition temperature (T_c).

The superconductors with transition temperature greater than 77 K, the boiling point of liquid nitrogen, are referred to as the high-temperature superconductors (HTS).

For alternating current (a.c.) flow, the surface resistance of the superconductor does not go to zero below T_c, but increases with increasing frequency.
There are many hundreds of high-temperature superconductors with varying transition temperature T_c.

YBCO (yttrium barium copper oxide) and TBCCO (thallium barium calcium copper oxide) are the two most popular and commercially available HTS materials.

Typical HTS materials

<table>
<thead>
<tr>
<th>Materials</th>
<th>T_C (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>YBa$_2$Cu3O${7-x}$ (YBCO)</td>
<td>\approx92</td>
</tr>
<tr>
<td>Tl$_2$Ba$_2$Ca$_1$Cu$_2$O$_x$ (TBCCO)</td>
<td>\approx105</td>
</tr>
</tbody>
</table>
Surface Resistance of HTS at RF/Microwave Frequencies

- YBCO @77K
- Cu @77K
- Cu @300K

Micro ohms
HTS Thin Film Technology

HTS thin films can be grown on a suitable substrate using sputtering, laser ablation, or other thin film deposition techniques.

Devices can be patterned using wet or dry etching techniques, e.g.

Dielectric substrate

HTS microstrip

Dr. J.-S. Hong
Department of Electrical, Electronic and Computer Engineering
Heriot-Watt University, UK
Email: J.Hong@hw.ac.uk
Substrates for HTS Thin Films

- To obtain good quality film, the dimensions of crystalline lattice at the surface of the substrate should match that of lattice of HTS.
- For RF applications the substrate should also have a low dielectric loss at RF.
- There are three widely used substrates for growing HTS thin films for RF applications: Magnesium Oxide (MgO), Lanthanum Aluminate (LaAlO$_3$), and Sapphire.

<table>
<thead>
<tr>
<th>Substrates for HTS films</th>
<th>ε_r (typical)</th>
<th>$\tan\delta$ (typical)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LaAlO$_3$</td>
<td>24.2 @ 77K</td>
<td>7.6 x 10$^{-6}$ @ 77K and 10 GHz</td>
</tr>
<tr>
<td>MgO</td>
<td>9.6 @ 77K</td>
<td>5.5 x 10$^{-6}$ @ 77K and 10 GHz</td>
</tr>
<tr>
<td>Sapphire</td>
<td>11.6 \parallel c-axis @ 77K</td>
<td>1.5 x 10$^{-8}$ @ 77K and 10 GHz</td>
</tr>
<tr>
<td></td>
<td>9.4 \perp c-axis @ 77K</td>
<td></td>
</tr>
</tbody>
</table>
HTS filters for licensed frequency spectrum of mobile communications

- Implement CQT (cascaded-quadruplet-trisection) or CQ designs for low insertion loss, high selectivity and/or linear group delay.
- Implement HTS filters on sapphire wafers for low-cost
10-pole CQT 10-MHz HTS Filter Design

Dr. J.-S. Hong
Department of Electrical, Electronic and Computer Engineering
Heriot-Watt University, UK
Email: J.Hong@hw.ac.uk
10-pole CQT 10-MHz HTS Filter Design

Magnitude (dB)

10 pole 10 MHz ideal

S11
S21
The designed filter was fabricated on a 0.43mm-thick sapphire wafer with double-sided YBCO films.

The YBCO thin films have a thickness of 300 nm and a characteristic temperature of 87K.

Both sides of the wafer are gold-plated with 200 nm thick gold (Au). The gold RF contacts are epoxy bonded to K-connectors with sliding contacts.

The fabricated HTS filter used a wafer size of 47x17 mm.
Excellent narrow-band response with a good rejection over the entire UMTS transmission band (2110 - 2170 MHz).
18-pole HTS Filter with Group Delay Equalisation

Introduction

• The selectivity can be significantly increased with the use of high-order filters, and there is a trend to develop high-order HTS filters to take advantages of miniature high Q HTS resonators.

• Unfortunately, higher order selective-only filters tend to result in a poorer phase performance even over the band center.
18-pole HTS Filter with Group Delay Equalisation

Introduction

All the three filters have a pass band of 15 MHz from 1960 MHz to 1975 MHz with the same ripple level, and are supposed to meet a selectivity of 70-dB rejection bandwidth of about 16 MHz.
For our design, only one quadruple section, which consists of the resonators 10 to 13, will be used for the group delay equalization, while the other three quadruplet sections are arranged for the high selectivity.
The 18-pole filter was designed to have a 15 MHz pass band at a center frequency of 1967.5 MHz.
18-pole HTS Filter with Group Delay Equalisation

Implementation of Microstrip Quadruplet A

The desired coupling matrix for the first quadruplet, i.e. coupled resonators 2, 3, 4 and 5, is given by

\[
\begin{bmatrix}
0 & M_{23} & 0 & M_{25} \\
M_{23} & 0 & M_{34} & 0 \\
0 & M_{34} & 0 & M_{45} \\
M_{25} & 0 & M_{45} & 0
\end{bmatrix}
= 10^{-2} \cdot
\begin{bmatrix}
0 & 0.4089 & 0 & 0.1822 \\
0.4089 & 0 & -0.5706 & 0 \\
0 & -0.5706 & 0 & 0.3460 \\
0.1822 & 0 & 0.3460 & 0
\end{bmatrix}
\]

\[(1)\]
18-pole HTS Filter with Group Delay Equalisation

Implementation of Microstrip Quadruplet B

The desired coupling matrix for the first quadruplet, i.e. coupled resonators 10, 11, 12 and 13, is given by

\[
\begin{bmatrix}
0 & M_{10,11} & 0 & M_{10,13} \\
M_{10,11} & 0 & M_{11,12} & 0 \\
0 & M_{11,12} & 0 & M_{12,13} \\
M_{10,13} & 0 & M_{12,13} & 0
\end{bmatrix} = 10^{-2} \cdot
\begin{bmatrix}
0 & 0.3419 & 0 & 0.1785 \\
0.3419 & 0 & 0.2047 & 0 \\
0 & 0.2047 & 0 & 0.3423 \\
0.1785 & 0 & 0.3423 & 0
\end{bmatrix}
\]
18-pole HTS Filter with Group Delay Equalisation

Final layout of 18-pole HTS microstrip filter

The overall chip size is 74 mm x 17 mm on sapphire substrate
The filter was then fabricated on a 0.43mm-thick sapphire (Al₂O₃) wafer with double-sided YBCO films. The YBCO thin films have a thickness of 300 nm and a characteristic temperature of 87K. Both sides of the wafer are gold-plated with 200 nm thick gold (Au) for the RF contacts.
The measured bandwidth is close to 15 MHz. The insertion loss of 1.4 dB at the band center was measured, including the losses of the contacts. The resonator Q is estimated to be larger than 50,000.
Design and Development of a Prototype of Hybrid Superconducting Receiver Front-End for UMTS Wireless Network: First Results and Application Perspectives

Fabrizio Ricci, Vincenzo Boffa, Guojun Dai, Giuseppe Grassano, Renata Mele, Riccardo Tebano, Domenico Arena, Giorgio Bertin, Nicola Pio Magnani, Giovanna Zarba, Antonello Andreone, Antonio Cassinese, and Ruggero Vaglio

Dr. J.-S. Hong
Department of Electrical, Electronic and Computer Engineering
Heriot-Watt University, UK
Email: J.Hong@hw.ac.uk

IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 15, NO. 2, JUNE 2005

Fig. 1. Block diagram of the core parts of HTS RFE prototype. Overall layout of the prototype consists of two channels with two duplexers and LNAs each. The cryogenic superconducting filter is inserted in one chain only.

Fig. 2. Layout of the 4-pole quasielliptical filter (a) and node diagram (b).
The filters were fabricated by using e-beam lithography and wet etching process. YBCO film is double side polished type. YBCO film thickness is 700 nm in both sides and one side is protected with a gold layer. The substrate is LaAlO$_3$ with the thickness of 0.5 mm.

Fig. 4. Photograph of the 4-poles HTS elliptic filter.

Fig. 5. Measured response of the 4-poles HTS elliptic filter.
Superconducting filters for radio astronomy

Birmingham University, 2006

Fig. 3. Layout of an 8-pole microstrip HTS filter.

Fig. 4. Photographs of the packaging for the HTS filter.

Measured at 22K
An Eight Pole Self-Equalised Quasi-Elliptic Superconductor Planar Filter For Satellite Applications

2005

J-F Seaux¹, S. Courreges¹, S. Bila¹, V. Madrangeas¹, M. Maignan², C. Zanchi³

¹ IRCOM – UMR CNRS n°6615, University of LIMOGES, 123 Av Albert Thomas, 87060 Limoges Cedex – France
² ALCATEL SPACE – 26 Av Champollion – 31037 Toulouse Cedex – France
³ CNES – 18 Av Edouard Belin – 31055 Toulouse - France

Thus, the interest of the metallic patch square to annihilate the parasitic couplings is shown in simulation. The input channel filter is realised using double-sided superconductor YbaCuO thin film on LaAlO₃ substrate with thickness of 520 µm.

New topology of the eight pole linear phase filter.
An Eight Pole Self-Equalised Quasi-Elliptic Superconductor Planar Filter For Satellite Applications

2005

Fig. 11. Group delay performance of the new topology.

The experimental responses of the encapsulated eight pole self equalised without tuning quasi elliptic HTS microstrip filter at 77 K are presented on Fig. 12.
Interest of the superconductivity at 30 GHz: Application to the HTS preselect receive filters for satellite communications

J. F. Seaux, C. Lascaux, V. Madrangeas, S. Bila, M. Maignan*

IRCOM UMR CNRS 6615, 123 avenue Albert Thomas, 87060 Limoges Cédex, France

*ALCATEL SPACE INDUSTRIES, 26 avenue Champollion, 31037 Toulouse Cédex, France

Fig. 5. Layout of a four-pole Tchebychev bandpass filter (30Ω impedance).

Qu ~ 4000 at 77K

1.5 dB insertion loss at 77K

Fig. 7. Measured responses of the four-pole Tchebychev bandpass filter (30 Ω impedance).
Tuning Fork Filter Design for Hand Scribe Tuning

Genichi Tsuzuki, Matthew P. Hernandez and Balam A. Willemsen
Superconductor Technologies, Santa Barbara, CA
IEEE MTT-S 2005

Tuning HTS filters:

• Mechanical tuning (e.g. tuning screws)
• Laser trimming
• Thin dielectric layer deposition
• Hand scribe tuning ->
Tuning Fork Filter Design for Hand Scribe Tuning

Fig. 1. Tuning Fork resonator and its equivalent circuit. The Tuning Fork is hung at one end of resonator (right side) through the gap capacitor C_g. The resonator is tuned by changing shunt capacitor to ground C_s.

So as not to damage HTS resonator
Tuning Fork Filter Design for Hand Scribe Tuning

Fig. 3. A layout of 10-pole AMPS-B band filter. Two tuning Forks, those give different tuning ranges, are hung at the bottom of each resonator. Numbers and scales beside tuning forks allows hand scribing easier.

Fig. 4. Initial measurement data before the tuning process.

Fig. 5. Initial measured and optimized return loss.

Fig. 6. Tuned and Optimized return loss.
The use of Micro Electromechanical Systems (MEMS) with High Temperature Superconductors (HTS) has enabled a new class of highly-selective tunable filters. HTS microstrip filters are generally planar, and are thus very well suited to subsequent monolithic processing such as MEMS technology.
Highly-Selective Electronically-Tunable Cryogenic Filters Using Monolithic, Discretely-Switchable MEMS Capacitor Arrays

A low loss electronically tunable filter was demonstrated using HTS/Au MEMS switched capacitor arrays. The two-pole filter was tuned by simultaneously varying the capacitance of each resonator by equal amounts. The total tuning range was about 25% with an average Q of 7,000 at 77 K.
A research team at NTT (Nippon Telegraph and Telephone) Corporation has focussed on improving power handling of HTS filters and found that

- IP3 is enhanced by increasing HTS thin film thickness t. For YBCO filters, IP3 at 70 K increased from 53 to 65 dBm as t increased from 620 nm to 800 nm.

- Different materials and deposition methods can affect the power handling.

- A possible trade-off between the passband insertion loss, i.e.$|S21|$, and power handling capability in HTS bandpass filters.
New Method to Improve Power Handling Capability for Coplanar Waveguide High-Temperature Superconducting Filter

Kei Satoh, Daisuke Koizumi, and Shoichi Narahashi

NTT DoCoMo, Inc., Wireless Laboratories

Fig. 2. Circuit pattern and dimensions of CPW-HTSFs employing line characteristic impedance of (a) 50 Ω and (b) 100 Ω.

High impedance line would result in a smaller Qu, but can reduce maximum current density so as to increase the power handling.
Improvement of Power Handling Capability

NTT, 2005

Fig. 5. Photograph of fabricated 100-Ω CPW HTSF.

| TABLE III |
| SPECIFICATIONS FOR SUPERCONDUCTOR FILM AND DIELECTRIC SUBSTRATE |

<table>
<thead>
<tr>
<th>Superconductor film</th>
<th>Dielectric Substrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>MgO</td>
</tr>
<tr>
<td>Thickness</td>
<td>0.5 mm</td>
</tr>
<tr>
<td>Critical temperature</td>
<td>86 K</td>
</tr>
<tr>
<td>Dielectric constant</td>
<td>9.68 (@ 77 K)</td>
</tr>
<tr>
<td>Loss tangent (tan δ)</td>
<td>< 10⁻⁶</td>
</tr>
</tbody>
</table>

Fig. 6. Frequency responses of 100-Ω CPW HTSF.
The IP3 of the 100-ohm CPW HTS filter is 62 dBm at 60K, while the IP3 of the 50-ohm CPW HTS filter is 54 dBm. This means that the former can handle over 6 times as much power as that of the latter.

Fig. 7. Comparison of nonlinear responses between 50- and 100-Ω CPW HTSFs.
Summary

• Some recent developments of HTS filters have been reviewed, including miniature high performances HTS filters for wireless and satellite communications as well as radio astronomy applications.
• There is also a new trend to develop electronically tunable HTS filters using RF MEMS and ferroelectronic devices.
• Power handling capability can be improved through designs, fabrications processes and materials.
• Superconducting filter R&D will certainly continue at least for niche applications.